Az apróval állomány és a ragadozógazdálkodás helyzete Magyarországon

Készült „A parlagi sas védelme Magyarországon” c LIFE10NAT/HU/019 LIFE+Nature programhoz

Intézetigazgató: Prof. Dr. Csányi Sándor

Témavezető: Dr. Szemethy László

Készítette: Biró Zsolt, Szemethy László, Heltai Miklós, Csányi Sándor, Szabó László, Patkó László és Ujhegyi Nikolett

Megbízó: Országos Magyar Vadászkamara

Megbízási szerződés száma: MKK/2344/2013

Gödöllő
2013
A tanulmány címe: Az apróvad állomány és a ragadozógazdálkodás helyzete Magyarországon

Megbízó: Országos Magyar Vadászkamara

Megbízott: Szent István Egyetem, Vadvilág Megőrzési Intézet

Intézetigazgató: Prof. Dr. Csányi Sándor

Témavezető: Dr. Szemethy László

Készítette: Biró Zsolt, Szemethy László, Heltai Miklós, Csányi Sándor, Szabó László, Patkó László és Újhegyi Nikolett

Megbízási szerződés száma: MKK/2344/2013

Gödöllő, 2013. december. 20.

__ __
Prof. Dr. Csányi Sándor Dr. Szemethy László
Intézetigazgató Témavezető
Tartalomjegyzék

1. Bevezetés ... 5

2. A mezei nyúl általános helyzetének elemzése ... 7
 2.1. A mezei nyúl országos helyzete ... 7
 2.2. A mezei nyúl populáció dinamikájának háttértényezői, az állománycsökkenés
 lehetséges okai ... 9
 2.2.1. Túlhasznosítás ... 9
 2.2.2. Az élőhely ... 17
 2.2.2.1. A táplálék ... 18
 2.2.2.2. Élőhely-szerkezet .. 22
 2.2.2.3. Az agrotechnika hatása ... 24
 2.2.2.4. Víz ... 26
 2.2.3. Ragadozók .. 26
 2.2.3.1. Madarak ... 26
 2.2.3.2. Emlősök ... 27
 2.2.4. Betegségek .. 27
 2.2.5. Időjárási tényezők .. 29

3. Ragadozógazdálkodás, megőrzés és védelem.. 31
 3.1. A ragadozó fajok elterjedésének és állományváltozásának értékelése a ragadozó
 gazdálkodás szempontjából ... 34
 3.2. Terjeszkedő fajok ... 38
 3.3. A ragadozó fajok állományainak felmérése ... 40
 3.4. A táplálkozás vizsgálatok eredményeinek értékelése 41
 3.5. A ragadozó gazdálkodás lehetőségei .. 48
 3.5.1. Mi a ragadozó gazdálkodás? ... 48
 3.6. Miért van szükség ragadozógazdálkodásra? ... 51
 3.6.1. Az eddigi gyakorlat értékelése .. 51
 3.6.2. Az alapállapot felmérés és a biológiai, ökológiai alapírak fontossága 56
 3.6.3. A ragadozó gyérítés megtervezése és végrehajtása 57
 3.6.4. Ellenőrzés .. 60
 3.6.5. A gyérítés gazdaságosságának értékelése .. 61
 3.7. Az emlős ragadozók helyzetére és megítélésére vonatkozó legfontosabb hazai és
 nemzetközi jogi források ... 61

4. Regionális elemzések ... 71
 4.1. A mezei nyúl állomány és a környezeti tényezők vizsgálata négy megye adatai alapján
 71
 4.1.1. Az elemzések köre és az adatok forrásai ... 71
 4.1.2. Az eredmények bemutatása és értékelése .. 73
 3.1.2.1. A mezei nyúl és a kiemelt fajok változásai az 1994-2012. közötti
 időszakban 73
4.1.2.2. A mezei nyúl gazdálkodási adatok változása 1994-2012. közötti időszakban ... 82
4.1.2.3. A mezei nyúl gazdálkodási adatok közötti korrelációk az 1994-2012. közötti időszak adatai alapján ... 91
4.1.2.4. A mezei nyúl gazdálkodási adatok és a földhasználat jellemzői közötti összefüggések ... 92
4.1.2.5. A mezei nyúl gazdálkodási és az időjárási jellemzők közötti korrelációk ... 96
4.1.3. Következtetések .. 103

4.2. A fácánállomány hasznosításának vizsgálata a négy legfontosabb apróvadas megye adatai alapján .. 106
4.2.1. Az elemzések köre és az adatok forrása .. 106
4.2.2. Az eredmények bemutatása és értékelése .. 106
 4.2.2.1. A fácán és a kiemelt fajok változásai az 1994-2012. közötti időszakban .. 106
 4.2.2.2. A fácán gazdálkodási adatok változása 1994-2012. közötti időszakban 108
 4.2.2.3. A fácán gazdálkodási adatok közötti korrelációk az 1994-2012. közötti időszak adatai alapján ... 117
4.3.3. Következtetések .. 122

5. Szintézis ... 123

6. Irodalomjegyzék ... 130
Az apróvad fajok a biodiverzitás részét képezik. Ugyanakkor nemesak magukban, mint természeti érték jelentősek, de tudományos, konzervációs és vadgazdálkodási értéket is képviselnek. Hagyománynosan az alföldi, nyílt területeken vadgazdálkodók számára az apróvad mind gazdasági, mind vadászati szempontból meghatározó jelentőségű. Ezen túlmenően az utóbbi évtizedek kutatásai egyre több bizonyítékkal szolgálnak az apróvad fajok ökológiai jelentőségéről is.

- Az apróvad fajok jóléte és állománynagysága erősen függ az ökológiai környezettel, ezért populációjellemzőik változása az élőhely minőségének indikátora.
- Az apróvad fajok számos ragadozó faj számára szolgálnak zsákmányul, így a táplálékhatókat kihagyhatatlan elemei.

Az apróvadállományok monitorozása, fenntartása és javítása tehát nemesak vadgazdálkodási, de biodiverzitás megőrzési szempontból is fontos.

A jelen feladatban az apróvadfajaink közül a fácánnal és a mezei nyúllal foglalkozunk, mivel a HELICON Life projekt szempontjából ez a két domináns faj. A még szóba jöhető fogoly és üregi nyúl állománya az utóbbi évtizedekben jelentősen visszaesett, a projekt területéről szinte teljesen eltűnt.

Hasonló vagy még rosszabb a helyzet az üregi nyúl esetében, amelynek állománya a ’90-es évek közepén csappant meg, gyakorlatilag az ország nagy részéről kipusztult. Jelenleg állománybecslési adatokkal nem rendelkezünk. Terítéke minimális. A projekt által érintett megévként nem éri el a 150 pld-t.

A két jelentősebb faj a mezei nyúl és a fácán gazdálkodásában is jelentős különbségek találhatók. Míg a mezei nyul állományok dinamikáját a természetes ökológiai tényezők és a hasznosítás szabályozza, addig a fácán esetében a mesterséges tenyésztésből származó kibocsátás lehet a meghatározó. Ugyanakkor érdemes a mezei nyúllal foglalkozni azért is, mert “r” stratégista voltából adódóan a számára kedvező változásokra (pl. élőhely-fejlesztések, a ragadozó állomány csökkenése stb.) gyorsan és nagyon jól reagál. Faragó (1997) vizsgálatában a Magyar Fogolyvédelmi Program területein a vonalas és a táblás élőhely-fejlesztésekre és az intenzív ragadozó gyéritésre a mezei nyúl állomány nőtt a leggyorsabban. Mindezek miatt kis befektetéssel nagy hasznot hozhat a mezei nyúl állomány növekedése. Ugyanakkor a mezei nyúl által okozott vadkár mértéke kicsi, vadászati értéke viszont nagy. Sok külföldi bérvadászt vonz a mezei nyúl vadászati lehetősége, amiből a vadgazdálkodó számára alapvetően fontos bevételek származnak. Ezen kívül a hazai vadászok számára is az egyik leggyakoribb, legelérhetőbb vadfaj. Mindezek miatt a tanulmányban a mezei nyúllal kapcsolatos ismereteket tárgyaljuk részletesebben.

Részletes bemutatjuk a mezei nyúl országos helyzetét, és az állományt veszélyeztető tényezőket. Részletesen tárgyaljuk az emlős ragadózó fajok helyzetét és a ragadozógazdálkodás lehetőségeit. Végül külön elemezzük a négy legfontosabb apróvadas megye példáján a legfontosabb környezeti tényezők hatását a mezei nyúl állományokra. Ugyanerre a négy megyére vizsgáljuk a fácán állomány helyzetét, a kibocsátás, az állománybecslés és a teríték valamint a legfontosabb ragadozók kapcsolatát.
2. A mezei nyúl általános helyzetének elemzése

2.1. A mezei nyúl országos helyzete

![1. ábra](image)

(forrás: Országos Vadgazdálkodási Adattár)

Az 1. ábrán jól látható a mezei nyúl populáció-nagyság ciklikus változása, amit más nyúlfajoknál is kimutattak korábban (pl. sarki nyúl). Ez azt eredményezi, hogy vannak...
időnként növekvő trendek a populáció változásában, ami elfedheti az általános csökkenés jelenségét a vadgazdálkodók előtt. Azonban a hosszútávú elemzés kimutatja, hogy ezek a ciklikus változások egy folyamatosan csökkenő görbén helyezkednek el.

Az állomány csökkenésének több oka lehet.

- A túlhasznosítás, vagyis az állomány növekményét, az un. „fenntartható hozamot” meghaladó hasznosítás.
- Az élőhelyek romlása.
- Ragadozók és betegségek okozta veszteségek.
- Szélsőséges időjárás káros hatásai.
2.2. A mezei nyúl populáció dinamikájának háttértényezői, az állománycsökkenés lehetséges okai

2.2.1. Túlhasznosítás

Az elmúlt évtizedek mezei nyúl gazdálkodását áttekintve (1. ábra) országosan megállapítható, hogy a tavaszi becsült állománynagyság és az éves hasznosított mennyiség nagyságrendje csak nagy vonalakban mutatnak összefüggéseket. Az 1996. évi becsléskor például közel 600-ezer egyedet regisztráltak, a hasznosítás mintegy 140 000 egyed. 1997-ben a becsült törzsállomány a félmilliót sem éri el a hasznosítás azonban csak 1400 egyeddel kevesebb. Ezek a számadatok több ökológiai és ökonómiai ok és okozati összefüggésnek a lehetőségét tárják fel.

A hasznosítási arányokat megvizsgálva (2. ábra) azt láthatjuk, hogy 1960-1970. között a törzsállományhoz viszonyított hasznosítási arány lecsökktent a korábbi 40%-os értékrol 30 %-ra, majd ez az érték megmaradt a mai napig kisebb ingadozásokkal. Vagyis a gazdálkodók a nyúlajtalan változásától függetlenül körülbelül állandó hasznosítási aránnyal dolgoznak. Ennek hibáját láthatjuk, ha azt a nyilvánvaló tényt tekintjük, hogy hiába jó a törzsállomány, ha gyenge a szaporulat, hiába igéretes a szaporulat, ha nagy a nyári elhullás. Emlékezzünk csak a 2003-as évre, amikor az elhúzódó telet aszályos nyár követte. Ilyenkor a vadászati szezon elején akár kevesebb is lehet a nyúl, mint tavasszal. Ha ilyenkor is ragaszkodunk a tél végén tervezett hasznosítási mértékhez, súlyosan túlhasznosítjuk az állományt. A gondot tetézi, hogy a rosszul tervezett hasznosítás általában megbízhatatlan állománybecslésre alapul. Az elmúlt három évtizedben több területen végeztünk állománybecsléseket a ma
legmegbízhatóbbnak elfogadott éjszakai reflektoros vonaltranszpekt módszerrel. Ezek eredményei nagy eltérést mutattak a helyi vadgazdálkodók beséléseitől.

A Dunántúl összességének mezei nyúl állománya az alacsony hasznosítási arány mellett is erősen lecsökkent 2001-re és ennek megfelelően a teriték is. 2002-től ugyan növekedés következett be, ami elsősorban Győr-Moson-Sopron és Tolna megye eredménye,
de a mezei nyúl ciklikus populációnagyság változása (ld. 1. ábra) miatt ez valószínűleg csak ideiglenes.

<table>
<thead>
<tr>
<th>Év</th>
<th>Becslés (db)</th>
<th>Hasznosítás (db)</th>
<th>Hasznosítási arány</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>109398</td>
<td>17699</td>
<td>16</td>
</tr>
<tr>
<td>1991</td>
<td>101614</td>
<td>17417</td>
<td>17</td>
</tr>
<tr>
<td>1992</td>
<td>93778</td>
<td>17088</td>
<td>18</td>
</tr>
<tr>
<td>1993</td>
<td>90955</td>
<td>14973</td>
<td>16</td>
</tr>
<tr>
<td>1994</td>
<td>78390</td>
<td>14680</td>
<td>19</td>
</tr>
<tr>
<td>1995</td>
<td>84532</td>
<td>13733</td>
<td>16</td>
</tr>
<tr>
<td>1996</td>
<td>82933</td>
<td>9673</td>
<td>12</td>
</tr>
<tr>
<td>1997</td>
<td>65752</td>
<td>9377</td>
<td>14</td>
</tr>
<tr>
<td>1998</td>
<td>61896</td>
<td>7796</td>
<td>13</td>
</tr>
<tr>
<td>1999</td>
<td>60970</td>
<td>7074</td>
<td>12</td>
</tr>
<tr>
<td>2000</td>
<td>62515</td>
<td>6388</td>
<td>10</td>
</tr>
<tr>
<td>2001</td>
<td>59979</td>
<td>6507</td>
<td>11</td>
</tr>
<tr>
<td>2002</td>
<td>66772</td>
<td>8257</td>
<td>12</td>
</tr>
<tr>
<td>2003</td>
<td>75818</td>
<td>10100</td>
<td>13</td>
</tr>
<tr>
<td>2004</td>
<td>80772</td>
<td>13074</td>
<td>16</td>
</tr>
<tr>
<td>2005</td>
<td>88683</td>
<td>16634</td>
<td>19</td>
</tr>
<tr>
<td>2006</td>
<td>96413</td>
<td>15049</td>
<td>16</td>
</tr>
<tr>
<td>2007</td>
<td>87467</td>
<td>16168</td>
<td>19</td>
</tr>
<tr>
<td>2008</td>
<td>95071</td>
<td>15971</td>
<td>17</td>
</tr>
<tr>
<td>2009</td>
<td>93995</td>
<td>13051</td>
<td>14</td>
</tr>
<tr>
<td>2010</td>
<td>88922</td>
<td>11165</td>
<td>13</td>
</tr>
<tr>
<td>2011</td>
<td>81776</td>
<td>13963</td>
<td>17</td>
</tr>
</tbody>
</table>

1. táblázat: A Dunántúl mezei nyúl gazdálkodása 1990-2011 között. (forrás: Országos Vadgazdálkodási Adattár)
A Dunántúl keletre eső régióban már egy elfogadhatóbb szintű hasznosítási százalékot látunk (3. táblázat). Az ország mezei nyúl hasznosításának 90%-a erre a régióra esik. Az is látható azonban, hogy itt az élőnyúl befogás nagyon nagy hangsúlyt kap, bár az utóbbi években csökkent az aránya (4. táblázat). Ugyanakkor látjuk, hogy az állandó 30 % körüli hasznosítási arány nem alkalmazkodik az állomány változásához. A grafikon jól szemlélteti a „sok illetve kevés” meghatározást, mivel a hasznosítás csak bizonyos fáziskíséssel követi a

<table>
<thead>
<tr>
<th>Év</th>
<th>Becslés (db)</th>
<th>Hasznosítás (db)</th>
<th>Hasznosítási arány</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>486961</td>
<td>158712</td>
<td>33</td>
</tr>
<tr>
<td>1991</td>
<td>543634</td>
<td>144947</td>
<td>27</td>
</tr>
<tr>
<td>1992</td>
<td>490762</td>
<td>162510</td>
<td>33</td>
</tr>
<tr>
<td>1993</td>
<td>492796</td>
<td>150408</td>
<td>31</td>
</tr>
<tr>
<td>1994</td>
<td>460344</td>
<td>171265</td>
<td>37</td>
</tr>
<tr>
<td>1995</td>
<td>498805</td>
<td>176141</td>
<td>35</td>
</tr>
<tr>
<td>1996</td>
<td>515667</td>
<td>130613</td>
<td>25</td>
</tr>
<tr>
<td>1997</td>
<td>404618</td>
<td>129126</td>
<td>32</td>
</tr>
<tr>
<td>1998</td>
<td>454174</td>
<td>102409</td>
<td>23</td>
</tr>
<tr>
<td>1999</td>
<td>402300</td>
<td>122675</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td>452250</td>
<td>126528</td>
<td>28</td>
</tr>
<tr>
<td>2001</td>
<td>461825</td>
<td>164325</td>
<td>36</td>
</tr>
<tr>
<td>2002</td>
<td>515684</td>
<td>167277</td>
<td>32</td>
</tr>
<tr>
<td>2003</td>
<td>554976</td>
<td>114442</td>
<td>21</td>
</tr>
<tr>
<td>2004</td>
<td>454306</td>
<td>119731</td>
<td>26</td>
</tr>
<tr>
<td>2005</td>
<td>432112</td>
<td>121436</td>
<td>28</td>
</tr>
<tr>
<td>2006</td>
<td>438823</td>
<td>95798</td>
<td>22</td>
</tr>
<tr>
<td>2007</td>
<td>393653</td>
<td>111057</td>
<td>28</td>
</tr>
<tr>
<td>2008</td>
<td>427791</td>
<td>116129</td>
<td>27</td>
</tr>
<tr>
<td>2009</td>
<td>429801</td>
<td>124433</td>
<td>29</td>
</tr>
<tr>
<td>2010</td>
<td>449801</td>
<td>80634</td>
<td>18</td>
</tr>
<tr>
<td>2011</td>
<td>372741</td>
<td>120180</td>
<td>32</td>
</tr>
</tbody>
</table>

(forrás: Országos Vadgazdálkodási Adattár)

<table>
<thead>
<tr>
<th>Év</th>
<th>Lelövés (db)</th>
<th>Befogás (db)</th>
<th>Befogás aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>96768</td>
<td>43511</td>
<td>45</td>
</tr>
<tr>
<td>1991</td>
<td>115845</td>
<td>31013</td>
<td>27</td>
</tr>
<tr>
<td>1992</td>
<td>122927</td>
<td>29352</td>
<td>24</td>
</tr>
<tr>
<td>1993</td>
<td>106628</td>
<td>40375</td>
<td>38</td>
</tr>
<tr>
<td>1994</td>
<td>117719</td>
<td>52860</td>
<td>45</td>
</tr>
<tr>
<td>1995</td>
<td>119808</td>
<td>56839</td>
<td>47</td>
</tr>
<tr>
<td>1996</td>
<td>86881</td>
<td>43190</td>
<td>50</td>
</tr>
<tr>
<td>1997</td>
<td>87837</td>
<td>41314</td>
<td>47</td>
</tr>
<tr>
<td>1998</td>
<td>71867</td>
<td>30528</td>
<td>43</td>
</tr>
<tr>
<td>1999</td>
<td>76533</td>
<td>46142</td>
<td>60</td>
</tr>
<tr>
<td>2000</td>
<td>78921</td>
<td>47607</td>
<td>60</td>
</tr>
<tr>
<td>2001</td>
<td>94188</td>
<td>70137</td>
<td>75</td>
</tr>
<tr>
<td>2002</td>
<td>124184</td>
<td>43093</td>
<td>35</td>
</tr>
<tr>
<td>2003</td>
<td>92525</td>
<td>21917</td>
<td>24</td>
</tr>
<tr>
<td>2004</td>
<td>91257</td>
<td>28474</td>
<td>31</td>
</tr>
<tr>
<td>2005</td>
<td>89134</td>
<td>32302</td>
<td>36</td>
</tr>
<tr>
<td>2006</td>
<td>74537</td>
<td>21261</td>
<td>29</td>
</tr>
<tr>
<td>2007</td>
<td>79906</td>
<td>31151</td>
<td>39</td>
</tr>
<tr>
<td>2008</td>
<td>88045</td>
<td>28084</td>
<td>32</td>
</tr>
<tr>
<td>2009</td>
<td>93775</td>
<td>30658</td>
<td>33</td>
</tr>
<tr>
<td>2010</td>
<td>67645</td>
<td>12989</td>
<td>19</td>
</tr>
<tr>
<td>2011</td>
<td>84931</td>
<td>35249</td>
<td>42</td>
</tr>
</tbody>
</table>

A jelenlegi hasznosítási gyakorlat egyik legnagyobb hibája a kései (decemberi) vadászatból eredő relatív túlhasznosítás. A mezei nyúl r-stratégista viselkedéséből az is következik, hogy hiába határozzuk meg a lehető legkörültekintőbben a vadászati szezon elején a hasznosítható mennyiséget. Ez az érték csak az adott időpontra igaz. Ettől kezdve, még ha jó esetben a vadászatok is folytának, a természetes elhullás is csökkenti az állományt. Így a hasznosítható mennyiség egyre fogy. A kompenzáló mortalitás (Frylestam, 1979) miatt ez akkor is igaz, ha nem vadászunk. A 3. ábra egy konkrét, terepi adatokon nyugvó példán mutatja be a hasznosítható mennyiség csökkenését (Dávid 2001). Jól látszik, hogy október közepén még jelentős mennyiségű nyulat lehetne terítékre hozni, ez a lehetőség azonban egy
hónap alatt eltűnik, november közepétől már csak a törzsállomány rovására vadászhatunk. Ez az un. relatív túlhasznosítás.

3. ábra. A fiatal-öreg arány és a hasznosítható mennyiség alakulása a vadászat időpontja szerint az egy alföldi apróvadas vadászterületen 2001-ben.

Az élőnyúl befogás minden évben nagyarányú volt 1968 óta (4. ábra). Egyes években meghaladta a teljes hasznosítás (kilövés+befogás) 50 %-át is. Az élőbefogást ugyan nagyobb bevételnél tartják a vadgazdálkodók, mint a kilövést, azonban a befogások általában januárban történnek, amikor már csak a törzsállomány van a területen, így ez relatív túlhasznosítást eredményez.

Az élőnyúl befogás szervezési és pénzügyi kockázatainak további felsorolása nélkül is megállapíthatjuk, hogy az élőnyúl befogás nem csak a populáció szempontjából káros, de gazdasági haszna sem egyértelmű.
<table>
<thead>
<tr>
<th>Vadászati év</th>
<th>Hónap</th>
<th>Ft/élő egyed (Nettó ár)</th>
<th>Ft/elejtett egyed (Nettó ár)</th>
<th>Élő/elejtett ár (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989/90</td>
<td>December</td>
<td>3.600</td>
<td>2203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>4.000</td>
<td>2740</td>
<td>68,5</td>
</tr>
<tr>
<td>1990/91</td>
<td>December</td>
<td>5.400</td>
<td>3163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>5.700</td>
<td>3542</td>
<td>62</td>
</tr>
<tr>
<td>1991/92</td>
<td>December</td>
<td>6.250</td>
<td>4.553</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>6.500</td>
<td>7.34</td>
<td>95</td>
</tr>
<tr>
<td>1992/93</td>
<td>December</td>
<td>7.300</td>
<td>8.44</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>8.700</td>
<td>1.431</td>
<td>74</td>
</tr>
<tr>
<td>1993/94</td>
<td>December</td>
<td>10.000</td>
<td>7.016</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>11.500</td>
<td>7.920</td>
<td>57</td>
</tr>
<tr>
<td>1994/95</td>
<td>December</td>
<td>12.320</td>
<td>9.139</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>14.000</td>
<td>9.401</td>
<td>78</td>
</tr>
<tr>
<td>1995/96</td>
<td>December</td>
<td>12.000</td>
<td>9.280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>13.500</td>
<td>8.018</td>
<td>76</td>
</tr>
<tr>
<td>1996/97</td>
<td>December</td>
<td>9.500</td>
<td>8.250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>10.500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(élőnyúl felvásárlási árak forrás: MEDO KFT.)

2.2.2. Az élőhely

A mezei nyúl állomány csökkenésének egyik, valószínűleg a legfontosabb oka az élőhelyek romlása (Bertóti 1975, Pielowski és Racynski 1976), ezen belül az intenzív mezőgazdaság (Smith és mtsai. 2005a).

A mezei nyúl klasszikus élőhelyit túlnyomórészt mezőgazdasági művelésbe vontuk. A hagyományosabb kisparcellás, változatos szerkezetű és összetételű, kevessé intenzív
mezőgazdasági művelés kedvezett a mezei nyúlnak. Ezt mutatják a ’60-as évekbeli, melioráció előtti magas állománynagyságok. A nagytáblás, egyre intenzívebbé váló mezőgazdaság veszélyei lehetnek:

- a táplálékészlet csökkenése;
- időszakos táplálékhiány;
- az élőhely-szerkezet megváltozása, a foltméreték növekedése és a változatosság csökkenése;
- agrotechnikai veszélyek.

2.2.2.1. A táplálék

A mezei nyúl, ahogy a neve is mutatja főként a nyíltabb, gyepek, ligeterdők és az erdőszélek lakója, ugyanakkor zárt erdőségekben ritkán találkozunk vele (Chapman és Flux, 1990).

Frylestam (1986) Svédországban három, különböző művelésű területen vizsgálta a mezei nyulak téli táplálék-összetételét. Összesen 37 fajt talált a gyomoranalízisek során, melyek közül 20 fűféle, 17 pedig kétszikű volt. A legnagyobb változatosságot a legeltetett területen találta (35 fél faj), a vegyes művelésű farmerterületen is kétszer annyi fajt fogyasztottak, mint a monokultúrás művelésű területen. Mindenhol kedvelték a búzát, a repcét leginkább a monokultúrás részekben fogyasztották. A mezőgazdasági terményekkel szemben előnyben részesítették a vadon termő növényeket, ahol lehetőségük volt rá (kivételt a monokultúra jelentette).

Vaughan és mtsai. (2003) arra megállapításra jutottak Angliában, hogy a mezei nyúl számára előnyös, ha a mezőgazdaságilag művelt területeken búza, répa és ugar földek vannak. A legeltetett területeken pedig több takarást biztosító erdős fölt, gyepestités és mezőgazdasági termény szükséges. Ezen vizsgálatok és a brit Game Conservancy Trust megállapításai szerint
is a mezei nyúl számára változatos élőhely szükséges sokféle növénytel, amelyek egész évben táplálékot és búvóhelyet nyújtanak számukra. A vetésváltás jelentőségét emelték ki Macdonald és mtsai. (2007), mivel így egész évben biztosítható a növényzeti borítás a mezei nyúl számára.

Ezt az eredményt Biró és mtsai. (2009b) hullatérsírsége vizsgálata is alátámasztja, a kukorica látogatottssága augusztusra erősen lecsökkent, mivel addigra a növény túl magasra nőtt a nyúl számára (8. ábra).

8. ábra: Egy vizsgálati területen a kukorica táblán talált hullatéksűrűség (db/100m) alakulása a hónapok során 2008-ban. Az eltérő nagybetűk szignifikáns különbséget jeleznek.

Heltay (1980) szerint a kevesebb növényfaj, ami a monokultúrás, nagytáblás mezőgazdaság velejárója nyáron a nyulak nagyarányú elhullásához vezet, mivel ezek betakarítása egyszerre történik, ezáltal hirtelen eltűnik minden tápláléknövény a területről. A relatív táplálékhányos időszak 2-3 hét lehet, ami alatt a nyulak nagy része vagy táplálékhány miatt, vagy a leromlott kondíciójuk miatt bekövetkező betegségek miatt elpusztul.

Farkas (1978a) a nagyüzemi kukoricatermesztés hátrányos hatását elemezte. Kimutatta, hogy a mezei nyúl a nagytáblákon (>100 ha) kisebb sűrűségben fordul elő, mint a kisebb táblákon. A táblák belsejét nem használják, csak a széleken találhatók meg különösen, ha ott erdő, gabona, vagy gyomsáv található. A nagytáblák belsejét csak akkor használták, amikor a kukoricatermés rossz volt (alacsony, ritka és gyomos). Hasonló megállapítást tett Waliczky (1981) a Duna-Tisza közén végzett megfigyelése során. Ebben az esetben azonban a nagytáblás napraforgó volt az a terület, ahol a nyulak nem találták meg az életfeltételeiket. A nagytáblás gazdálkodással csökken az árokpartok, gyomos szegélyek egységnyi területre eső mennyisége is, ami szintén kedvezőtlenül hat a nyúlállományra, mivel a mezei nyúl ezeket előszeretettel használja fialásra, búvóhelyként és táplálkozásra is (Barkóczi és Hagymási 1982). Istvánffy (2002) szerint is a nyulak csak a táblák szegélyeit használják, vagyis nagyobb táblák esetén jelentősen lecsökken a lehetséges élőhelyek száma. Magyar (1981) szintén amellett érvel, hogy a nagytáblás művelés lecsökkenti a búvóhelyek mennyiségét, és a terület fedettségét is drasztikusan megváltoztatja az egyszerre nagy területen történő aratás.

erdőfoltok, gyep területek, csatornák) és a mezei nyúl mozgáskörzetének mérete alapján az állatok által effektíven használható mezőgazdasági táblák területének arányát az egészhez képest. A területen bekövetkezett táblaméret csökkenés megteremtette a lehetőséget a nyulak számára, hogy a teljes területet használhassák. Azonban ez optimális körülményekkel számolva igaz, ugyanis jelenleg a mezei nyúl számára alkalmas élőhelyek valós állapota rosszabb, mint azt feltételezte a szerző (az utak, gyomos szegélyek valós szélessége, megléte). Ezek alapján állíthatjuk, hogy a mezei nyúl számára az apróbb, mozaikos táblaszerkezet az előnyösebb, de még az ekkora átlagos táblaméret esetén is szükséges az egyéb élőhelyek megléte.

Biró és mtsai. (2009a, b) szintén azt találták, hogy a mezei nyulak a nagytáblák esetében elsősorban a szegélyeket használják, a gyepeken és a kisparcellákban azonban egyenletes a területhasználat (9. ábra).

2.2.2.3. Az agrotechnika hatása

2.2.2.3.1. Direkt hatások

A direkt hatáson a növénykultúrák tábláin végzett gépi munkálatok idején, illetve a betakarításkor és a tarlóégetéskor jelentkező elhullást értjük. Fodor (1976) szerint a nagyterületű kukoricatáblák betakarítása nem jelent nagy problémát a mezei nyúl szempontjából, mivel ezekben a területeken nem él meg a nyúl. A nyulak elkerülők a kukoricatáblákat, ugyanakkor ez nem jelenti azt, hogy ott ne fordulnának elő. Mivel az űszi időszakban ezek a táblák jelentik a mezőgazdasági területeken szinte az egyetlen takarást, ezért ezek egyszerre gyorsan történő levágása a mezei nyulak menedékhelyeinek mennyiségét drasztikusan csökkenti, ami a ragadozók általi természetes elhullás esélyét növeli. Ezzel szemben a búzatáblák tavaszi gépi művelése közvetlenül károsítja a nyulak első és második szaporulatát. A gyakori, nagysebességű gépekkel végzett lucernakaszálások sok mezei nyúl pusztulását okozzák.

Jakabházy (1976) megerősíti ezt a tapasztalatot. Szerinte a lucerna-betakarítás felgyorsulása és gyakoribb válása (elsősorban a lucernaliszt készítése miatt) erőteljes állomány csökkenést okozott az egyik vizsgált vadászterületen a szomszédos területekhez képest, ahol nem volt ilyen betakarítási forma. A három vizsgált terület egyébként minden tekintetben nagyon hasonlított egymásra, és a lucernaliszt készítésének beindulásaig hasonló volt a nyúlállományuk is. Azután viszont erőteljesen csökkent az állomány a kiemelt területen, miközben a másik két vadásztársaságban még nőtt is a populáció sűrűség. Megállapításai szerint a vadriasztás illetve a vad kihajtása a területről nem használ az ilyen gyakran és nagysebességű gépekkel végzett lucernakaszálásoknál. Másik következtetése a tarlóégetésre vonatkozott, miszerint a nappali égetések nem okoznak jelentős károkat a nyúlállományban, mivel az állatok inkább az éjszakai órákban keresik fel a táblákat.

Barkóczi és Hagymási (1982) szintén hangsúlyozzák a tavaszi földmunkák káros hatását. A talajsímítózás, tárcsázás és kombinátorozás okozzák a legtöbb elhullást, mivel a nyulak az űszi szántások mély barázdáiban bújnak meg, és gyakran itt is fialnak február végén, március elején. A második fialást pedig a lucerna kaszálása veszélyezteti. A tarlóégetésről viszont azt gondolják, szemben a korábbi szerzővel, hogy sokkal jelentősebb károsító hatása van különösen, ha nem szakszerűen egy oldalról, hanem körben felgyújtják a
táblát. Farkas (1978b) megerősíti, hogy az egy oldalról égetett tarló esetén sokkal kisebb az elhullás mértéke, mint a körben felgyújtott táblánkál.

Saly (1976) szerint a munkagépek okozzák inkább a károkat a nyúlszaporulatban és nem a vegyszerek, mert a nyulakat még a gépekre szerelt vadriasztóval sem lehet megvédni, ugyanis az állatok inkább lelapulnak, és nem elmenekülnek. Hasonlóan vélekedik Hecsei és Szappanos (1978), akik a tavaszi talajművelési munkák károsító hatását emelik ki a növényvédő szerekkel szemben. Továbbá a lucernakaszállást tartják fontos elhullási tényezőnek a mezei nyúl szempontjából. Farkas (1977) szintén a lucernakaszállást tartja a legfontosabb veszteségokozónak. A lucerna koncentrálja a mezei nyulakat a környező táblákrol, és a nagysebességű és nagy vágószélességű gépek elől a fiatal nyulak nem tudnak elmenekülni. Különösen az első és a második szaporulatot érinti ez a probléma. A vadriasztókat a szerző szerint alkalmazni kell, bár a nyulak esetében nem annyira hatékonyak, mint a fácán esetében. Inkább a technológián kell változtatni, miszerint a tábla belsejéből kell indulnia a kaszálógépnek, és körkörösen kifelé haladva kell elvégezni a műveletet.

Mindezen hatások mellett a gyors aratás rövid idő alatt eltünteti a takarást biztosító növényzetet a területről (Magyar 1981), ami különösen a pillangósoknál probléma, amelyeket a mezei nyúl előszeretettel használ fialásra. Az ily módon takarás és védelem nélkül maradt kisnyulak könnyebben esnek áldozatul a ragadozóknak.

2.2.2.3.2. Indirekt hatások

Ugyanakkor szintén indirekt hatás a tápláléknövények hirtelen eltűnése a területről, ami a gyors aratás miatt következik be (Heltay 1980). Másrészt a gyomirtószerek indirekt hatása az is, hogy csökkent a fogyasztható növények választéka a mezőgazdasági területeken, ugyanakkor látható, hogy a nyulak sokféle növényt szeretnek a táplálékukban.
2.2.2.4. Víz

A mezei nyulak vízigényéről nagyon keveset tudunk. Kovács és Heltay (1985) összefoglaló munkájában megemlítik, hogy a nyulak vízigénye valószínűleg erősen környezetfüggő, ami azt jelenti, hogy vízbő területeken illetve időszakokban elegendő számára a vegetációs víz. Ugyanakkor szárazság idején, szoptatáskor sokkal több vizet igényelhet és ilyenkor nem elég a növényekből kinyerhető folyadék, hanem innia kell. Mivel a csatornák használata lecsökkent a mezőgazdasági területeken, ezért a száraz nyarakon, ami egyre jellemzőbb az utóbbi években, nagy szüksége lehet a nyulaknak vízre, amit nem találnak meg esetleg a területen és emiatt is elhullások következhetnek be. Azonban ez a kérdés még nem tisztázott, ennek kiderítéséhez is vizsgálatok szükségesek.

2.2.3. Ragadozók

Az élőhely romlása és a gazdálkodási hibák mellett a ragadozók okozta veszteség is jelentősen csökkentheti az apróvadállományt. Ebben közrejátszik a ragadozógazdálkodás hiánya, vagyis az apróvad védelmében a ragadózók létszámának tudatos szabályozása és predációs veszély csökkentése.

2.2.3.1. Madarak

Kalotás (1982) vizsgálata szerint az egerészölyvek nem okoznak komoly károkat a mezei nyúl állományban. Csak a fióka nevelés időszakában talált mezei nyúl maradványokat a fészkek melletti köpetekben és ezek is csak 0,7 %, 1,9 % valamint 1,1 % relatív gyakoriságot tettek ki 1979-1981 között. Összességében a megvizsgált 1807 zsákmánymaradványból csak 25 volt mezei nyúl. Ugyanakkor, ha azt tekintjük, hogy mennyi egerészölyv van Magyarországon, akkor ezt a hatást nem hanyagolhatjuk el. Ha a mezei nyúl nem is jelentős zsákmányfaj az egerészölyvek számára, azért a mezei nyúl számára még fontos ragadozófaj lehet az egerészölyv. Tóth (2003) vizsgálatában kimutatta, hogy van olyan ragadozó madár fészek, ahol a szülők specializálódtak a mezei nyúl fogyasztásra, szinte kizárólag mezei nyúl maradványok voltak a fészekben.

2.2.3.2. Emlősök

Az emlős ragadozók hatását a 3. fejezetben részletesen bemutatjuk.

2.2.4. Betegségek

A legfontosabb betegség, mely a mezei nyúlpopulációkat veszélyezteti a tularémia. Sajnos a legtöbb esetben teljesen észrevétlen módon van jelen a mezei nyúl állományban.

| Évek | Beszállító Vt. /db | N /db | Fertőzött nyulak aránya %-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Átlag</td>
</tr>
<tr>
<td>1995/96</td>
<td>82</td>
<td>19891</td>
<td>2,3</td>
</tr>
<tr>
<td>1996/97</td>
<td>37</td>
<td>4731</td>
<td>2,54</td>
</tr>
<tr>
<td>1997/98</td>
<td>74</td>
<td>12205</td>
<td>6,17</td>
</tr>
<tr>
<td>1998/99</td>
<td>67</td>
<td>5806</td>
<td>2,86</td>
</tr>
<tr>
<td>1999/00</td>
<td>70</td>
<td>11657</td>
<td>9,04</td>
</tr>
<tr>
<td>2000/01</td>
<td>49</td>
<td>8881</td>
<td>3,61</td>
</tr>
<tr>
<td>2001/02</td>
<td>41</td>
<td>7870</td>
<td>4,37</td>
</tr>
<tr>
<td>Átlag</td>
<td></td>
<td></td>
<td>4,41</td>
</tr>
</tbody>
</table>

A tularémia fertőzöttsége már 1995/96-ban is magas volt, területileg jelentősen változott (7. táblázat).

A magas fertőzöttségi arány sok esetben elveszi a vadgazdálkodók kedvét az élőnyúl befogástól, és kilövessel igyekeznek hasznosítani mezei nyúl állományukat. A dunántúli régióról adat nem áll rendelkezésre. A fellelhető szakirodalom a rágsásolók általi terjesztés mellett újabb a kullancsot is megjelöli átvívő agensként.
<table>
<thead>
<tr>
<th>Megye</th>
<th>Beszállító Vt./db</th>
<th>N/db</th>
<th>Fertőzött nyulak aránya %-ban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Átlag</td>
</tr>
<tr>
<td>Bács – Kiskun</td>
<td>13</td>
<td>1255</td>
<td>1,86</td>
</tr>
<tr>
<td>Békés</td>
<td>24</td>
<td>11704</td>
<td>2,10</td>
</tr>
<tr>
<td>Hajdú – Bihar</td>
<td>14</td>
<td>3086</td>
<td>0,66</td>
</tr>
<tr>
<td>Jász-Nagykun-Szolnok</td>
<td>17</td>
<td>4264</td>
<td>5,99</td>
</tr>
<tr>
<td>Szabolcs-Szatmár-Bereg</td>
<td>12</td>
<td>1607</td>
<td>0,38</td>
</tr>
</tbody>
</table>

(Forrás: Bárány Péter szakmérnöki diploma dolgozat)

2.2.5. Időjárási tényezők

A mezei nyúl jó alkalmazkodó képességét mutatja széles elterjedési területe (Mitchell-Jones és mtsai. 1999), továbbá hogy sok országba, változatos klimájú területekre is sikeresen be tudták telepíteni (Kovács és Heltay 1985).

Kovács és Heltay (1985) könyükben több külföldi szerzőre hivatkozva leírják, hogy a mezei nyúl populáció növekedésére negatívan hat a száraz nyár, például a növényi táplálék víztartalmának csökkenése miatt is. Ugyanakkor a hosszan tartó esőzések és a túl sok csapadék is csökkenti az állománynagyságot, elsősorban a szaporulat megnövekedett mortalitásán keresztül. Ezt erősítette meg a 2010-es év, amikor Magyarországon extrém sok csapadék hullott tavasszal és nyáron (sok belvíz és áradás is mutatta ezt) és a mezei nyúl állomány jelentősen csökkent a megelőző évekhez képest.

Smith és mtsai. (2005a) Európát átfogó cikkelemzésükben szintén kimutatták, hogy a januári enyhébb időjárás kedvezően hat a nőstény nyulak termékenyülésére. Az alacsony hőmérséklet és csapadékos időjárás negatív hatással van a fiatal nyulak túlélésére, elsősorban életük első két hetében. A melegebb időjárás általánosságban kedvező, míg a túl sok csapadék kedvezőtlen, bár a nyári kevés csapadék is rossz a túlélés szempontjából. A sok csapadék nem csak a hőháztartását rontja a kisnyulaknak, hanem megnöveli egyes betegségek kialakulásának esélyét is, mint pl. a coccidiózis.
Beukovic és mtsai. (2013) Szerbiában a Bácskaság területén vizsgálták egy tíz éves adatsoron a mezei nyúl populációban a fiatal nyulak arányát, a szaporodási időszak (március-szeptember) havi középhőmérséklete és összes csapadéka közötti összefüggést. Az eredményeik alapján a júniusi átlag hőmérséklet és a júniusi csapadékmennyiség negatív korrelációt mutattat a fiatal nyulak arányával, azaz minél alacsonyabb a hőmérséklet és minél kevesebb csapadék hullik júniusban annál jobb a kisnyulak túlélési esélye. A korábbi vizsgálatokhoz képest itt még egy tényezőt találtak jelentősnek, a szeptemberi csapadék mennyisége pozitív hat a szaporulatra.

Ugyanakkor Rödel és Dekker (2012) a mezei nyúl teríték csökkenését tapasztalták akkor, amikor a késő nyári-őszi (augusztus-október) csapadék mennyisége növekedett, ami ellentmond a szerb vizsgálatoknak. Azonban a német kutatók is elismerik, hogy az őszi sok csapadék azért is csökkentette a terítéket, mert esetleg kevesebb, vagy sikertelenebbül vadásztak.

Tóth (2012) a dél-hevesi vadgazdálkodási körzetben tizenöt év adatsorának felhasználásával vizsgált tizenkét változót (év, hasznosítás, tavaszi becsülés, őszi kalkulált létszám, havi átlag hőmérséklet, hőmérsékletek havi szóródása, havi összes csapadék, csapadék havi szóródása). Korreláltatva az őszi kalkulált létszámot a hőmérséklet és csapadék adatokkal, továbbá a tavaszi becsült létszámmal színtén azt találta, hogy a tavaszi csapadékosabb időjárási időszak az őszi állománynagyságát, így valószínűleg kedvezőtlen hatással van a kisnyulak túlélésére. A magasabb márciusi átlag hőmérséklet viszont kedvezhet a kisnyulaknak, mert ilyen esetekben növekedett az őszi létszám is. Az elhúzódó csapadékos időszak májusban nem kedvez a mezei nyúl populációinak.

Összegezve az időjárási tényezőknek, elsősorban a hőmérsékletnek és a csapadék mennyiségnak van hatása a mezei nyúl évenkénti állomány változására, de ez a kapcsolat bonyolult lehet, területről-területre változhat. Mindenesetre több módon is befolyásolhatja a túlélést, hiszen ezáltal kevesebbe táplálékhoz juthatnak (nem nő ki a növényzet, vagy kiég) és éhén halhatnak. Az is lehetséges, hogy a kevesebb táplálék miatt kialakult rosszabb kondíció legyengítheti az állatok immunrendszerét és könnyebben megbetegednek. Esetleg a ragadozók sikeresebben kapják el őket, vagy egyszerűen kihűlnek. Mindezek a hatások viszont csak a szokványostól eltérő, szélsőséges ingadozások esetén mutathatók ki.
3. Ragadozógazdálkodás, megőrzés és védelem

Magyarország méltán híres természeti értékei mellett vadgazdálkodásáról is. Ennek egyik jelképe volt a két világháború közötti időszak – ma már szinte hihetetlennek tűnő – apróvadbősége. A szocializmus évtizedeiben, mint minden mezőgazdasági ágazatban, a nagy volumenű, iparszerű tenyésztési rendszerek vadgazdálkodási alkalmazásaival próbálták, az apróvad-gazdálkodás területén már akkor is érezhető problémákat orvosolni. A rendszerváltozás idejére kiderült, hogy pusztán tenyésztéssel nem lehet megállítani még a legjobban szaporítható faj, a fácán állománysűrűség csökkenését sem, nem is beszélve a zárttéri technológiákat rosszul tűrő fajokról, nevezetesen a fogolyról és a mezei nyúlról.

Ugyanebben az időszakban a hasonló élőhely igényű természetvédelmi oltalom alá eső madár- és emlős-fajok létszáma is csökkent (Bihari és munkatársai 2007, PECBMS 2007). Esetenként e fajok érdekében is tenyésztéssel, mesterséges felneveléssel próbálkoztak, mint például a túzok esetében (Fodor és munkatársai 1971, Faragó 1992). Általában azonban a védetté nyilvánítással és egyes élőhelyek védelmével, később rekonstrukciójával próbálták az állomány és élőhely csökkenéseket ellensúlyozni (Rakonczay 2002).

Az 1990-es évek elején bekövetkezett birtokszervezettel és termesztési technológiai változásoktól sokan várta, e nehézségek megoldását, abban bízva, hogy a kialakuló új struktúra sok egyéb mellett, az apróvadsűrűségben és egyes védett fajok elterjedésében és létszámában is hasonlatos lesz az 1930-as évek Magyarországhoz. E váralakozások számos ok miatt nem váltak be. A vadgazdálkodásban az egyik leggyakrabban felemlíttetett ezek közül az, hogy ellentétben az akkori időszakkal napjainkra a ragadozó fajok többsége valamilyen védelmet élvez, a róka létszáma a vesztség elleni immunizálásnak is köszönhetően növekszik, a vadászható fajok ellen alkalmazható eszközök között számos tiltott, így még a kedvezően alakuló élőhelyi viszonyok mellett is korlátozottak a vadásztársadalom lehetőségei. A természetvédelem is egyre gyakrabban tekint fontos feladatként a ragadozó fajok korlátozására (Bankovics 2006, Béltekiné és mtsai 2010). Bár e fajok megítélése nyilván sokkal inkább ökológiai szerepük és nem vélt, vagy valós kártételelük alapján történik meg, mégis egyre többször emlegetik elsősorban a róka, a borz és alkalmanként a nyest és a nyuszt jelentős hatását egyes prédafajok állományaira.

Felmerül azonban a kérdés: vajon mennyire igazak ezek az állítások, vélekedések? Tényleg a ragadozó fajok okozzák a legnagyobb problémát? Tényleg súlyos károkat okoznak a védett fajok? Tényleg az immunizálás miatt növekszik a róka létszáma? Tényleg

A XX. század modern vadgazdálkodásának megalapozója Aldo Leopold (1933) öt pontban foglalta a legfontosabb figyelembe veendő tényezőket ahhoz, hogy egy adott állománnyal történő gazdálkodás legfontosabb feladatait meg lehessen határozni:

1. A számunkra érdekes-értékes vadászható, vagy védett préda faj állománysűrűsége.
2. Az előforduló ragadozó fajok és azok sűrűsége.
3. A ragadozó fajok táplálék-összetétele, preferenciája.
4. A vadászható, vagy védett préda faj állományának kondíciója és élőhelyének minősége.
5. A ragadozó fajok számára rendelkezésre álló alternatív zsákmányfajok hozzáférhetősége.

Magyarországon a harmadik évezred elejére jutottunk el oda, hogy a fenti kérdésekre válaszolni tudunk. A Szent István Egyetem Vadvilág Megőrzési Intézetében (SZIE VMI), a Kaposvári Egyetemen (KE), és az Eötvös Lóránt Tudományegyetemen (ELTE) folyó kiterjedt szakmai munka alapozta meg ezt a tudást, melynek legfontosabb eredményeit az előző fejezetekben már összefoglaltuk. Fontos körülmény volt, hogy a vizsgálatoknak anyagi hátteret is biztosítottak, elsősorban a Földművelésügyi és Vidékfejlesztési Minisztérium (FVM), kisebb részben a Környezetvédelmi Minisztérium, Országos Tudományos és Kutatási Alap és egyéb kisebb-nagyobb kutatásfinanszírozási pályázatok. Ezeket a kutatási eredményeket kiválóan egészíti ki az Földművelésügyi és Vidékfejlesztési Minisztérium által fenntartott, és Szent István Egyetem Vadvilág Megőrzési Intézetében működő Országos Vadgazdálkodási Adattár (OVA), mely a vadászható fajok esetében azok becslési és terítékadatait tartalmazza. Összességében a már eddig bemutatott adatok és tudományos
eredmények lehetővé teszik, hogy minden ragadozó faj esetében meghatározhassuk a hosszú távú állománykezelési, védelmi és gazdálkodási prioritásokat.

Az ehhez szükséges tervek elkészítésének két útja lehetséges. Az egyik, hogy a fenti öt pontnak megfelelően külön-külön részletes összegzések történnek és e tanulmányokból elvileg kis kiegészítésekkal bármely élőhely, bármely fajára megadhatók a gazdálkodási/kezelési előírások. A másik, hogy egy-egy különösen értékes vagy érdekes faj védelmében esetleg állományainak kezelésére, hasznosítására készülnek el kezelési tervek. Ezek részleteiben az adott cél elérése érdekében alkalmazzák a fentebb említett kutatási és monitorozási programok eredményeit. Természetesen mindig alaposan végig kell gondolnunk, hogy a számos változat közül esetünkben melyikre kell összpontosítani. A fenti gondolatmenet alapján a következő lehetőségeink vannak:

- Védett illetve vadászható zsákmányfaj állományán akarjuk csökkenteni a vadászható ragadozó nyomását;
- Védett illetve vadászható zsákmányfaj állományán akarjuk csökkenteni a védett ragadozó nyomását;
- védett ragadozó faj érdekében akarjuk csökkenteni a potenciálisan versenytárs védett illetve vadászható ragadozó faj(ok) jelenlétét.

Az egyes esetek eltérő megoldásokat kívánannak, de a hozzájuk szükséges ismeretanyag és döntési mechanizmus egyforma.

Bármelyik megoldás mellett is döntünk, nem szabad elfelednünk azt, hogy egy-egy faj, bármely tudatos, megalapozott kezelése, védelme, hasznosítása minden esetben egy rendszerbe illeszkedik. Azaz egy alaposan kidolgozott ragadozógazdálkodási stratégia is, csak abban az esetben érteti el célját, ha szervesen illeszkedik az életközösségek és az egyes fajok átgondolt, megfelelő adatokon nyugvó, világos célok mellett végrehajtott gazdálkodásának, kezelésének rendszerébe. A ragadozó gazdálkodással csak abban az esetben érdemes foglalkozni, ha az egy rendszerbe illeszthető a vadvazdálkodási szempontból érdekes zsákmányfajok állományainak és élőhelyeinek kezelésével, valamint távlati hatásai kiszámíthatók. Hasonló módon a védett (potenciális zsákmány, vagy ragadozó) fajok érdekében is közvetlen, aktív beavatkozásokra (élőhelyjavítás, negatív tényezők megszüntetése) meg kell tenni, mielőtt a ragadozó fajok kezelését megkezdenénk. Jó élőhely nélkül ugyanis nincs megfelelő kondíciójú vadállomány, s nincs alkalmas búvóhely sem.
Természetvédelmi célú alkalmazásra akkor kerülhet sor például, amikor védett ragadozó emlős a szintén védett, vagy fokozottan védett potenciális zsákmányfaj állományát szaporodási, vagy utóidővel elűző időszakban veszélyezteti. Nehéz kérdés a sorrend és az elsőbbség meghatározása, de ettől eltekintened nem célszerű, amennyiben az élővilág változatosságát szeretnénk megőrizni. A védett és fokozottan védett ragadozó emlősök közül eddig mindössze a farkas és a hiúz számára készült faj- és élőhelymegőrzési program (akcióterv), míg ugyanez a vidrára még csak készülőben van. Ezeknek a terveknek az elkészítéséhez ezekkel az ismeretekekkel a természetvédelem gyakorlatában részt vevő biológusoknak és mérnököknek, valamint a zöldhatóságok szakembereinek is célszerű felvételezni magukat.

Ebben a fejezetben célunk a hazai ragadozó emlősfajok minél jobb megismertetése és olyan információk, ismeretek, tudás átadása, amelyek segítségével minden érintett - legyen az vadgazdálkodó, természetvédő, vagy biológus - a legmegfelelőbb úton indulhat e fenti lehetőségek megvalósításában. Aldo Leopold javaslatával összhangban elsősorban a létszám és az elterjedés, másodszorban pedig a táplálkozási szokások ismerete alapján határozzuk meg ragadozóink helyét és szerepét az életközösségekben, valamint az állományaik kezelése során kitűzhető célokat.

3.1. A ragadozó fajok elterjedésének és állományváltozásának értékelése a ragadozó gazdálkodás szempontjából

Farkas, hiúz: mindkét faj meglepődését nagyban elősegíti a jól karbantartott, tudatosan hasznosított nagyvadállomány jelenléte. A fajok védelme, és a fajvédelmi tervben leírtak végrehajtása a feladat.

Róka: a növekvő állomány okozta problémák több területet is érintenek. A vadgazdálkodásban elsősorban az apróvadas területeken okozhat nehézségeket, de azok jól megtervezett, tudatos és ellenőrzött gazdálkodással valószínűleg megoldhatók. Nagyobb
problémákat okozhat azonban a védett fajok állományaiban. A nemzeti park igazgatóságok számos ok miatt nincsenek felkészülve arra, hogy a védett fajok kezeléséhez hozzáártozzon azok ragadozóinak vagy versenytársainak gyérítése is. Teljesen megoldatlan a lakott területen jelenlévő állományok kezelése. A lakott területek ugyanis részei a vadászterületeknek, bár vadgazdálkodásra ún. „alkalmatlan” területként. A rókára, mint vadászható fajra vonatkozik a vadászati törvény, ami szabályozza az elejtés lehetséges módját, helyét és idejét. Ezért az sem dönthető el egyértelműen, hogy kinek kellene megoldani az ilyen jellegű problémákat. Valószínűleg erre önálló szervezetet kellene létrehozni, és működésének törvényi hátterét is meg kellene teremteni (a helyzet teljesen hasonló a nyest esetében is).

Nyestkutya: jelenléte hazánk faunájában egyáltalán nem kívánatos. Ezért az időben korlátozás nélküli vadászhatóság fenntartása mellett szükség lenne az észlelési- és terítékedatok terepi ellenőrzését. Ennek végrehajtása a vadgazdálkodás és a természetvédelem számára egyaránt fontos, halasztást nem tűrő feladat!

Mosómedve: megítélése és a jövőre javasolt kezelése megegyezik a nyestkutyaéval; azaz az információk terepi ellenőrzése és a szaporodó állományok megszüntetése a cél. Továbbá, mivel terjedésének valószínűsíthető forrása az állatkereskedelem, ezért azt az európai ajánlásokkal összhangban korlátozni vagy tiltani kellene a mosómedve árusítását. A nyestkutya-hoz hasonlóan a megtelepedés megakadályozása a természetvédelem és a vadgazdálkodás közös, halasztást nem tűrő feladata! A mosómedve és a nyestkutya a fentiek miatt már a hazánkban engedélytelenül prémjükért tartott állatfajok között sem szerepel.

Borz: a vadászhatóság hatásának nyomon követése fontos, bár az eddigi adatok arra utalnak, hogy a vadászatnak nincs kedvezőtlen hatása az állománya ára. A kihirdetett vadászati idény (július 1. és február utolsó napja között) nem igazán alkalmas kártételének jelentős csökkentésére. Ennek két oka van: egyrészt a borz ugyan nem alszik téli álomban, de november elejtől aktivitása jelentősen csökken, másrészt, ha van a fajnak tényleges kártétele, akkor azt a tavaszi, fészkelési időszakban okozza. Nyilvánvaló, hogy ha a cél a borz kártételének csökkentése, akkor gyérítését is ebben az időszakban kellene végezni.

Nyuszt: védelmének feloldása nem indokolt, ezért nem javasolt, de azokon a területeken, ahol fészkrablásával értékes madárfajokat fényezet, ellenőrzött gyérítése vagy élve fogás utáni áttelepítése – a nemzetközi szabályokkal is összhangban - elfogadható. Ez
azonban a területileg illetékes természetvédelmi és vadászati hatóságának közös, egymás érdekeit kölcsönösen figyelembe vevő munkájával valósulhat meg.

Vadmacska: megőrzése és megmaradt állományainak stabilizálása érdekében mindenképpen el kell készíteni a faj védelmi tervét. Védelmét jogi úton is erősíteni kell, ezért fokozott védelmének kihirdetése és eszmei értékeinek jelentős növelése is javasolt.

Vidra: cél a hazai stabil állomány megőrzése. Azokon a területeken, ahol heveny természetvédelmi problémák merülnek fel (pl. a fokozottan védett cigányréce fészkeit fosztja ki), befogása indokolt lehet, bár itt is leginkább megfelelő élőhelykezeléssel kezelhetők a problémák. Az áttelepítés más területre azért kérdéses, mert gyakorlatilag már minden lehetséges élőhelyén előfordul. Vidramentő- és bemutató helyek (pl. Petesmalmi Vidrapark) fenntartása javasolt. Haltermelő tavakon elterelő rendszerek és védelmi berendezések kiépítésének támogatását javasoljuk. Tekintve, hogy bár országosan elterjedt, de kis sűrűségben előforduló, sérülékeny fajról van szó, továbbá mert a vidra állományszerkezetéről igen hiányosak az ismereteink, **fokozottan védett státusának feloldását nem javasoljuk.** A vidra állományának monitorozására, a konfliktusok mérséklésére, az élőhelyeinek fenntartására, a kutatási irányokra vonatkozó faj- és élőhelymegőrzési program elkészítetését a Környezetvédelmi és Vízügyi Minisztérium végzi (Lanszki és Heltai 2005).

Kistestű menyétfélék: a nyest és a közönséges görény esetében a vadászati idény megtartását, míg a menyétnél annak kihirdetését javasoljuk. Jelenleg a nyest egész évben, a borz és a közönséges görény július 1. és február utolsó napja között vadászható, a menyét – bár közönséges fajunk - védett. Valamennyi fajnál igaz az is, hogy ha van természetvédelmi és/vagy vadgazdálkodási szempontból lényeges hatásuk, károkozásuk, akkor az tavasszal, a fészkelés, utódnevelés időszakában történik. Ezért, ha a vadászhatóság indoklása a lehetséges kedvezőtlen hatások mérséklése, akkor erre az időszakra kellene a vadászatot engedélyezni.

Hermelin: védelmének feloldására semmilyen indok nincsen, annak fenntartása mindenképpen javasolt. Részletes terepi vizsgálatok lennének szükségesek a faj helyzetének jobb ismeretéhez.

Molnárgörény: védelmének fenntartása elsősorban hiányos ismereteink miatt fontos, a terepi vizsgálatok megindítása sürgető.

Az egyes fajok kezelési javaslatait összefoglalva a 8. táblázat tartalmazza.
Áttekintve a leírtakat megállapíthatjuk, hogy vadgazdálkodási és természetvédelmi problémát többnyire a növekvő állományú, generalista fajaink, valamint a faunaidegen fajok jelentenek. A kezelendő feladatot adó fajok, három csoportba sorolhatók: a generalista, az invazív, és a kóbor háziállatok. Valamennyiük közös sajátossága az állomány egyértelmű növekedése.
3.2. Terjeszkedő fajok

Világszerte ismert a generalista táplálkozású, kiválóan alkalmazkodó kozmopolita, opportunista, közepes testű ragadozó fajok terjeszkedése. A gyorsan változó természeti környezethez és az ember közelégéhez is jól alkalmazkodnak. Így nemcsak állománysűrűségük növekszik, hanem általában új, addig nem “használt” élőhelyeket is elfoglalnak, vagy ha az ember szállítja új területekre, földrészekre, azt gyorsan meghódítják. Hazánkban és Európa nagy részén is ilyen faj a vörös róka, a nyest, a közönséges görény vagy a menyét, amelyek amellett, hogy létszámuk növekszik, egyre többször jelennek meg lakott területeken. Valószínűleg ez a jelenség az oka egy korábban kipusztult, öshonos fajunk, az aranysakál újbóli megjelenésének is.

Szintén növekvő létszámról, így egyre gyakoribb előfordulásra számíthatunk az úgynevezett invazív fajok esetében (IUCN 2000, Shine és munkatársai 2000). E fajok, sok esetben emberi “segítséggel”, növelik hagyományos areájukat. Új versenytársakként vagy ragadozóként jelenek meg az elfoglalt területeken és így nem csupán fogyasztásukkal okozthatnak a mi szempontunkból növekvő kártélt. Veszélyesek lehetnek azzal is, hogy az érintett zsákmaryafajok ragadozóval szembeni válaszai még nem alakulhhattak ki, továbbá hatásuk kedvező lehet az öshonos specialista ragadozóra is. Az idesortolt fajok természetvédelmi megítélése egyértelműen rossz (Lowe és munkatársai 2000). E fajok közé tartozik a Magyarországon is egyre gyakrabban megfigyelt mosómedve és a nyestkutya és a (még) nem kimutatott americai nyérc.

Komoly gondot okozhatnak az ember által tartott, de valamilyen ok miatt visszavaduló (önállósuló) vagy a szabad területekre csak ki-kilátogató kóbor állatok, a házi macska (TWS 2006) és a kutya. E fajok megjelenése a természeti területeken elsősorban a lakossági szokásoktól, divattól esetleg a kulturális szinttől függ. Következménye természetvédelmi és vadgazdálkodási szempontból is rendkívül kedvezőtlen, esetenként. Szigorú odafigyeléssel sikeresen eltávolíthatók fegyverrel, de eddigi eredményeink alapján hatékonyan csapdázhatók is.

Az egyes csoportok jellemzéséből kitűnik, hogy szorosan vett gazdálkodás, azaz folyamatosan ellenőrzött, tudatos, adott cél érdekében végzett tevékenység, csak a generalista fajok esetében képzelhető el. Nem lehet ugyanis hosszú távú célokon alapuló tevékenységet végezni az időnként meg-megjelenő “szellemekkel” (egyes invazív fajok) és olyan fajokkal (kóbor állatok) melyek pillanatnyi megjelenése és kártétele szinte teljesen független a
vadászterület állapotától. Ezekben az esetekben a folyamatos odafigyelésen, a gondolkodás nélküli elejtésen túl, csak nagyon kevés tehető. Munkánkat eredményesebbé tehetjük, ha ismerjük e fajok lábnyomait, ürüléküket, hangjukat. Ezekkel a jelekkel ugyanis általában hamarabb találkozunk, mint magával az állattal.

Az igazi “ellenfél”, vagy inkább versenytárs napjainkban, tehát a vörös róka. Jelentős állománysűrűsége, táplálkozási szokásai, kiemelkedő alkalmazkodó képessége teszik a szó nemes értelmében is, immár idézőjel nélküli, ellenfélé. Az elmúlt évtizedekben bebizonyosodott, hogy nem lehet kiírni – ami mai szemléletünk szerint nem is cél – és a folyamatos, de átgondolatlan vadászat sem csökkenti eredményesen létszámát. Ahhoz, hogy
sikeresen korlátozzuk e lehetséges versenytárs szerepét, állományával gazdálkodnunk kell, gyérítése során ki kell használnunk minden lehetséges és megengedett eszközt és ismeretet.

3.3. A ragadozó fajok állományainak felmérése

Egy-egy védett, vagy védendő faj megőrzése érdekében tudnunk kell azt, hogy mely ragadozók állományainak jelenlétére kell az adott helyen számítanunk. Ehhez elengedhetetlen az ott élő ragadozók állományának és az egyes fajok dinamikájának ismerete. Döntésünk során egyaránt figyelembe kell venni az országos tendenciákat és a helyi eltéréseket. Ehhez érdemes saját nyomon követő (monitorozó) rendszert alkalmaznunk, hogy a fajok állományváltozásai alapján hozhassunk az adott helyzethez alkalmazkodó döntéseket. Ráadásul ebben az esetben a beavatkozásunk sikerességét is ellenőrizhetjük, mert az állományváltozás ismerete biztosítja a visszacsatolást.

Más a helyzet akkor, ha az állományváltozásokat is nyomon követő (monitorozó) rendszerre van szükségünk. A jól felismerhető kotorékban lakó fajok esetében erre legalkalmazabb a kotorékok helyének és sűrűségének nyilvántartása és követése. Területnagyságtól függően ezt végezhetjük a teljes területet lefedő kotorékkereséssel, sávos becsléssel, vagy vonal transzekt módszerrel is. A kotorékbecsles elvégzését a télvégére, tavasz elejére kell időzítenünk, amikor a kotorékok már mindenképpen használtak, tisztították és a lágyszárú növényzet takarása még nem jelentős. A feladatot évente kell elvégezniünk. Ezzel a módszerrel jól becsülhető a róka és a borz, valamint nyílt területeken a közönséges görény kotoréksűrűsége (Heltai és Kozák 2004, Kozák és Heltai 2006).

A kistestű menyétfélék esetében – így a menyét, a hermelin, a nyest, a nyuszt, a közönséges- és a molnárgörény esetében – a legbiztosabb monitorozás, különösen alféldi
területeken a rendszeres csapdázás. E fajok viszonylag könnyen csapdázhatóak, ugyanakkor a befogással járó stresszt is jól tűrik. Egy 300-500 hektáros foltban 100 csapdát üzemeltetve, évente egy, vagy két csapdázási kampánnyal a csapdázási sikereség és hatékonyság alapján minimális állománysűrűség és az állományváltozás is jól becsülhető. A módszer előnye, hogy az alkalmazott eszközpark akár egyes fajok állományának csökkentésére is alkalmas (Heltai és munkatársai 2005).

3.4. A táplálkozás vizsgálata eredményeinek értékelése

A Erdei (1977a) szerinte a róka tavasszal és nyáron nem okoz akkora károkat az apróvadban, így a mezei nyúlban sem, mint összel és télen. Míg az első időszakban a rókák gyomortartalmának 17,8 %-a volt mezei nyul, addig a második időszak alatt 29,6 %-a. Összességében, ha darabszámra nézzük, akkor csak 4,3 %-os relatív gyakorisággal volt jelen a róka táplálékában a mezei nyul, ha tömegre vetítjük, akkor ez az érték már 18,8 %, de a darabszám a fontosabb. Egy másik cikkének adatai (Erdei 1977b) 133 hazai (dél-magyarországi) róka gyomortartalmának elemzésén alapultak. A mezei nyul aránya területtől
függően 3.5-5.5 %, a fácáné és a fogolyé 0 és 8 % között változott. A róka domináns táplálékát kisemlősök, főként mezei pocok alkotta. Jelentős volt a rovarok részaránya. Ezzel ellentétben Farkas (1983a) azt találta, hogy a kölyökevelés időszakában ejtenek el több nyulat a rókké, igaz a gyomortartalmakban ő sem talált sok nyulat, de a kotorékoknál 11,8%-ban mezei nyúl maradványokat talált. Egy másik beszámolójában (Farkas 1983b) a hasznos apróvad szerepe jelentősebb a róka táplálékában. Vizsgálata szerint a róka fő táplálékát tavasszal kisrárgcsálók (44 %), háziállat vágási hulladékok (21 %), valamint mezei nyúl (19 %), fácán (12 %) képezték. Nyáron kisrárgcsálók (50 %), fácán (23 %), növények (16 %), összel szintén kisrárgcsálók (32 %), vágási hulladék (21 %), növények (31 %), telén kisrárgcsálók (42 %), vágási hulladék (31 %), valamint fácán (12 %) alkották.

Ha összegezzük ezeket az eredményeket, akkor azt láthatjuk, hogy az apróvad megjelenése a róka a táplálékában erősen területfüggő. Még a jó apróvadasnak tartott helyeken sem tekinthető nagynak az apróvad fogyasztás. Úgy tűnik, hogy a róka hatása a apróvad-állománya nem lehet jelentős.

A fentebbi rövid irodalmi összefoglaló legnagyobb hibája az, hogy a vizsgálatok térben és időben egymástól nagyon távol voltak és az alkalmazott módszerekben is jelentős eltérések voltak. Ez a különbözőségek természetesen hatnak az eredményekre és az azokból levonható következtetésekre. Az FVM Vadgazdálkodási Alapja által támogatott Országos Emlős Ragadozó Monitoring Program keretében azonban lehetőségünk volt egységesített mintagyűjtési és feldolgozás módszerekként, jellegében és gazdálkodásában jelentősen különböző területeken megvizsgálni a róka fácán fogyasztását (Szemethy és mtai 2003). Ennek eredményeit az alábbiakban foglaljuk össze.

Abádszalók

Az 12. ábrán a fő táplálékalkotók időszakonkénti alakulása látható. Fontos, hogy a kisemlősök fogyasztásának csökkenésekor, az apróvad fogyasztása emelkedett, miközben a többi táplálékfeleség szerepe általában alárendelt maradt. Az őt év összevont adataiból képzett évszakos összetétel alapján a kisemlősök fogyasztásának részaránya télen és tavasszal volt legkisebb (34-35%), majd fokozatosan emelkedett özsig (61%). A mezei nyúl fogyasztás aránya ezzel éppen ellentétesen, 24-25%-ról 5%-ra csökkent. A fácán fogyasztása csak összel emelkedett meg (5-9%-ról 13%-ra). A növényi táplálék fogyasztása egész évben kismértékű volt (7-9%), de többnyire a fácánéval azonos arányú volt.
Jászárokszállás

Jászárokszálláson is a kisemlősök domináltak (E: 43-79%), a legfontosabb kisemlős faj a mezei pocok volt. A mezei nyúl fogyasztás minden évszakban előfordult, de jelentős emelkedés télen kezdődött és tavasszal kiugróan magas értéket ért el (57%!). Vagyis a 2002/2003-as kemény télen és az azt követő, rágcslálókban szegény tavaszon a róka másodlagos táplálékforrása a mezei nyúl volt, kihasználásának aránya jelentőssé vált. A róka táplálékában a csökkenő kisemlős fogyasztást a mezei nyúl helyettesítette, különösen a kritikus téli és tavaszi időszakban. A területen a vizsgált időszakban, annak ellenére, hogy természetes és kibocsátott fácán is vadászható mennyiségben fordul elő, a fácánfogyasztása gyakorlatilag kimutathatatlan volt (13. ábra)!
A róka fő táplálékát itt is a kisemlősök alkották, de egy idő után jelentőssé vált a fácán szerepe is. Ennek oka, hogy egy viszonylag kis területen jelentős mennyiségben (közel tízezer előnevelt madarat bocsátottak ki a vizsgálat területen) vált könnyen hozzáférhető táplálékká a fácán. A mezei nyúl fogyasztás elhanyagolható volt (14. ábra). Az összevont évszakos minták alapján az elsődlegesen fontos kisemlősök mellett tavasszal jelentős volt a gerinctelenek, a háziállatok és a nyúlalakúak, nyáron és összel a növények fogyasztása. A mezei nyúl tavasszal, fácán összel fordult elő gyakrabban táplálékként.

13. ábra: A róka évszakos kisemlős és apróvad fogyasztása Jászárokszállás körzetében 2000 és 2003 között (E%)

14. ábra: A róka évszakos kisemlős és apróvad fogyasztása Fonyód körzetében 2000 és 2002 között (E%)
Heltai és mtsai. (2000) szerint a róka mezei nyúl fogyasztása nem függ a nyúlálomány sűrűségétől (15. ábra). Kis prédapopuláció-sűrűség esetén is képes nagyobb arányban fogyasztani mezei nyulat, amikor is komolyabb károkat okozhat. A rókára ugyanaz igaz, mint az egerészölyvre, hogy bár úgy tűnik számára a nyúl nem annyira fontos táplálékalkotó, de a mezei nyúl számára fontos ragadozó lehet a róka.

15. ábra: A mezei nyúl populáció-sűrűségének összefüggése a mezei nyúl relatív gyakoriságával a róka táplálékában.

A házimacskák táplálékában kis relatív gyakorisággal fordult elő mezei nyúl maradvány. 1999-2002. között télen 1,6 %, tavasszal 2,2 %, nyáron 3 %, míg összel 1,2 % volt ez az érték. A vadmacskák és a hibridek esetében az 1999-2002. közti időszakban a mezei nyúl előfordulási gyakorisága a táplálékban 4,2 %, illetve 2,2 % volt. Figyelembe véve azt, hogy kóbor házimacskák nagy számban jelenhetnek meg a vadászterületen, a házimacskák kártételét nem szabad elhanyagolni.

A mezei nyúl előfordult még a mezei görény táplálékában 1,6 %-os és a nyest táplálékában 2 %-os relatív gyakorisággal (Heltai és mtsai. 2000).

Az eredmények érdekessége, hogy még a részletes tápláléklisták is csak nagyon ritkán, vagy egyáltalán nem tartalmaznak ritka, védett fajokat. Abádszalókon például alig-alig
találtunk foglyot, Dévaványán pedig sohasem találtunk túzokot a róka táplálékában. Ennek ellenére senki sem mondhatja azt, hogy a túzok, vagy a fogoly állományra a ragadozók nincsenek hatással.

Akárhogyan is nézzük a táplálkozásvizsgálatok eredményeit nem vonhatunk le más következtetést: extrém helyzeteket kivéve az apróvad szerepe a róka táplálkozásában nem jelentős. Így nyilvánvalóan a róka apróvad-állományra gyakorolt hatása nem lehet túlságosan nagy. Így van ez? Mi az oka a vadgazdálkodási gyakorlat tapasztalatai és a táplálkozásvizsgálatok következtetései közötti eltéréseknek? Csak a különböző megfigyelési, vizsgálati módszerek? Vagy valami más is?

A táplálkozás vizsgálatok célja egy-egy faj, a mi esetünkben a róka, táplálkozásbiológiai jellemzőinek feltárása. Megismerhetjük mely fajokat fogyasztja el a róka, milyen arányban szerepelnek azok az étrengében és mitől függhet a fogyasztás gyakorisága.

A róka tápláléklistája rendkívül változatos. A fentebbi területek közül például Abádszalókon csak a négyéves vizsgálati periódusban több mint ötven különböző táplálékalkotót mutattunk ki, de a teljes időszak alatt összességében közel voltunk a 200 eltérő táplálékféleséghez. Azaz megtudhattuk, hogy a róka táplálékspektruma rendkívül széles. Láthatuk azt is, hogy a területek között jelentős különbségek vannak a táplálék összetételében és ez függ az egyes táplálékalkotók hozzáférhetőségétől. A róka tehát választ. A szokásai és a terület adottságai szerint. És ezt mind megtudhatjuk a táplálkozás vizsgálatokból. Azaz tudni fogjuk, hogy az adott területen melyik zsákányfaj lesz jelentős a róka szempontjából. És a róka szempontjából a fácán nem jelentős zsákányfaj. Ha van fácán, természetesen igyekszik vadászni belőle. Ha nincs, vagy kevés van, majd eszik mást. Azaz a táplálkozás vizsgálatok alapján nem tudjuk megmondani azt, hogy valójában milyen hatással is van a róka a fácánra. Mert nem a fácán szempontjából vizsgálódtunk, hanem a róka szemüvegén keresztül néztük a világot. Ez a fenti látszólagos ellentmondás egyik oka. A táplálék vizsgálatok a ragadozó oldaláról közöltik meg és adnak választ a kérdésre. A róka számára ugyanis nem fontos a fogoly (fürj, haris, stb.), mint táplálék, mert ha nincs fogoly, akkor is kiválóan megél más táplálékon. A fogoly szempontjából viszont rendkívül fontos a ragadozók jelenlété, vagy hiánya, mert egy kisméretű állományban minden egyes egyed elveszítése rendkívüli jelentőségű lehet (Caughley 1994, Caughley és Gunn 1996). A másik oka annak, hogy a táplálkozás vizsgálatok nem mutatják ki megfelelően a ragadozók hatását az, hogy a kártegel zöme a fészkelési, fiókanevelési időszakban történik. Az elfogyasztott tojás, fióka vagy csibe
rendkívül nehezen vagy gyakran egyáltalán nem azonosítható a gyomorból és az ürülékből sem.

A valódi hatás megismeréséhez azt kellene tudnunk, hogy a fácán vagy a mezei nyúl szempontjából mennyire fontos a róka jelenléte. Azaz mi történik egy-egy terület apróvadarományával, ha a területen nem fordul elő a róka és/vagy egyéb ragadozók sem. Ezek a ragadozó elvonásos vizsgálatok, amelyek hazánkban még nem történtek meg. Ennek ellenére sejtéseink már lehetnek, hiszen Dévaványán a túzokoknak készített 400 hektáros a gyakorlatban ragadozómentes kertben a nyúlállomány erős szaporodását tapasztalják. De sajnos az adatgyűjtés és értékelés alapvetően (a bekerítet terület funkciójának megfelelően) a túzok sikeres repatriációja terjednek ki, és nem erre a különleges ragadozó-zsákmányállat kapcsolat vizsgálati lehetőségére.

A nemzetközi irodalom azonban több ilyen vizsgálatot is ismer, változatos eredményekkel. Az egyik legújabb egy Finnországi vizsgálat volt, ahol bukó és úszórécék fészkelj nagyságát és utódfejlesztési sikerét vizsgáltak erőteljes ragadozó gyérítés mellett és anélkül. Mind a két mutatóban szignifikánsan jobbak voltak a ragadozómentesített területek a kontroll területekhez képest (Kauhala 2004).

3.5. A ragadozó gazdálkodás lehetőségei

Aldo Leopold (1933) öt pontja közül eddig nem vizsgáltuk a védendő-értékes zsákmányfaj állománysűrűségét, illetve állományának állapotát és élőhelyeinek a minőségét. Ezt az egyes zsákmányfajok esetében külön-külön kell megtenni. Bemutattuk viszont a hazánkban előforduló emlős ragadozó fajok általános helyzetét és állományalakulását, táplálkozási szokásaikat és így a választható (alternatív) táplálékforrásokat is. Mindezek alapján elsődlegesen fontos emlős ragadozónak, minden hazai élőhelyen a rókát, a borzot és a kóbor állatokat határoztuk meg, melyek ellen mindeneképpen védekezni, és a vadállományokkal gazdálkodni kell. A többi faj a ragadozógazdálkodás szempontjából másodlagos szerepűnek tekinthető, bár helyileg komoly jelentőségűek is lehetnek. Ennek eldöntése viszont célzott vizsgálatokon alapuló gondos értékelést igényel.

A továbbiakban ezek alapján tekintjük át a jelenlegi helyzetet és adunk javaslatokat, megoldási lehetőségeket.

3.5.1. Mi a ragadozó gazdálkodás?

Az utóbbi évtizedekben átalakult természet- és gazdálkodási szemlélet ismeretében különleges esetektől eltekintve (pl. invazív fajok szigetekről való kiírása; például: Kerbirio és munkatársai 2004, Orueta és Ramos 2001) napjainkban senki sem gondolja, hogy egyes fajokat kiírjuk környezetünk ből. Másrészt be kell látni azt is, hogy a természetvédelmi oltalom alatt álló és a vadászható fajok kezelési lehetősége között éles határvonal húzódik. A védett ragadozó fajok esetében fajvédelmi tervekkel megalapozott, tudatos, általában élőhelyének minőségére ható kezelésekről lehet szó, amely csak időnként és helyenként párosulhat az esetleges károkozás ellentételezésével, vagy még inkább célirányos támogatásokkal, vagy közvetlen sűrűségsökkténtéssel. Ebben az esetben a gazdálkodás az eddiginél lényegesen tudatosabb, aktív védelmi és kezelési intézkedésekkel járó tevékenységet jelent, melynek alapvető célja e fajok állományainak növelése vagy stabilizálása, a károkozás elkerülése vagy mérséklése.

Nem szabad elfelejteni azonban, hogy egyes védett fajok kezelésében is lehetőség lenne a regionális vagy átmeneti intézkedésekre, például az esetleges természetvédelmi szempontú károkozás elkerülésére, vagy mérséklésére. Ilyen eset, amikor a fokozottan védett cigányréce fészkeket kifosztogató védett nyuszt egyedektől befogjuk, vagy a halteleltető
tavaktól a fokozottan védett vidrát villanypásztorral tartjuk távol. Az Európai Unió szabályozásai mindkettőre lehetőséget adnak és a tapasztalatok is rendelkezésre állnak. Ilyenkor – elsősorban az angolszász országokra jellemzőbb - pragmatikusabb, az aktuális hazai helyzethez jobban igazodó gazdálkodás vagy kezelés lenne célszerűbb.

A **vadászható emlős ragadozó fajok esetében** már egészen másról van szó. Ezeknél ugyanis már egyértelműen és minden szemszögből gazdálkodásról van szó. A mezőgazdasági vagy vadgazdálkodási rendszerben a ragadozó jelenlététől, táplálkozásával gazdasági kárt okozhat a vadgazdálkodónak, az állattenyésztőnek, a településeik lakóinak és eszmei kárt a természetvédelemnek. Ezért, jól meghatározott cél érdekében, lehetőleg minél nagyobb területen, tudatosan, előre tervezetten kell beavatkozni, majd a beavatkozás sikereségét ellenőrizni és e visszacsatolás eredményeképpen beavatkozásainkat megváltoztatni vagy megerősíteni. Gazdálkodási tevékenységről lévén szó a beavatkozás költségei nem haladhatják meg az annak eredményeképpen megjelenő többletbevétele összegét. Ennek oka, hogy már senki nem tud, és nem is akar veszteséges tevékenységet fenntartani. Végeredményben tehát ebben az esetben is – a természetvédelmi kezeléshez hasonlóan - hosszútávú gazdálkodási tervet kell készíteni!

Természetesen más a helyzet, ha a ragadozók – legyenek azok védettek vagy vadászhatóak – **egy-egy ritka zsákmányállat életfeltételeit, fennmaradását veszélyeztetik.** Ez elsősorban a kritikusan alacsony egyedsűrűségű fajok (pl.: parlagi vipera, földön vagy zsombékón, szigeteken fészkelő madarak) esetében következhet be, ahol minden egyed elvesztése komoly hatással lehet a populáció hosszú távú megmaradására. **Ebben az esetben minden lehetséges eszközzel, költséget nem kímélve kell fellépni a ragadozók ellen (Orueta és Ramos 2001).**

E fenti okfejtés azt is jelenti, hogy egy országos ragadozógazdálkodási program pénzfedezetettel való ellátása részben közösségi feladat. A természetvédelmi értékek védelme az egész társadalom érdeke, azaz ennek finanszírozásához hátráért is a teljes társadalomnak kell megtérmenie, ugyanúgy, mint minden más természetvédelmi feladat esetében. A gazdálkodási tevékenység támogatása, vagy nem támogatása már csak szakmapolitikai kérdés. Azaz, ha a vadgazdálkodás, mint ágazat saját erőforrásaitól képes támogatást nyújtani, tagjaiknak egy egységes cselekvési terv végig viteléhez, akkor ezt meg tudja oldani. **Egy ilyen esetleges országos, horizontális programot az elsődlegesen fontos, vadászható emlős ragadozókra, azaz a rókára és esetleg a borzra érdemes kidolgozni.**
Vannak azonban a ragadozókkal szembeni fellépésnek korlátai is. Ha a csökkentendő ragadozó faj vadászható, akkor természetesen csak a hazai és nemzetközi előírásokat kell betartani a gyérítés, állományapasztás közben. **Nem tisztázott azonban, hogy mi a helyzet akkor, amikor a problémákat védett ragadozó fajok okozzák.** Ezekben az esetekben egyedi elbírálás szükséges. A legtöbb fajnál ezzel az egyedi elbírálással fény derülhet arra, hogy a probléma csak vélt, a többi esetben valószínűleg indokolható és probléma nélkül engedélyezhető a védett ragadozó gyérítése, a védett, vagy fokozottan védett zsákmanyállatfaj állományának védelme érdekében. Ez azon esetekben képzelhető el, mikor az adott védett ragadozó országos állománya szempontjából a helyi gyérítés értékelhető kockázatot nem jelent. Ez lehetséges például a nyuszt és a vidra esetében. Megjegyezzük, hogy a védett ragadozók védett zsákmanyállat fajok állományában okozott kártelele a legtöbb esetben élőhelykezelési problémákra vezethető vissza, amint azt a vidra mocsári teknősre, illetve récefélékre irányuló predációja esetében tapasztaltuk (Lanszki és mtsai. 2006, Lanszki és Széles 2006), ezért itt nem is a gyérítés a megoldás.

Problémát az olyan ritka, fokozottan veszélyeztetett fajok megítélése jelent, mint például a nyuszt és a vidra esetében. Megjegyezzük, hogy a védett ragadozók védett zsákmanyállat fajok állományában okozott kártelele a legtöbb esetben élőhelykezelési problémákra vezethető vissza, amint azt a vidra mocsári teknősre, illetve récefélékre irányuló predációja esetében tapasztaltuk (Lanszki és mtsai. 2006, Lanszki és Széles 2006), ezért itt nem is a gyérítés a megoldás.

Problémát az olyan ritka, fokozottan veszélyeztetett fajok megítélése jelent, mint például a nyuszt és a vidra esetében. Azaz mi a teendő abban az elméleti, de megvalósulható esetben, amikor a vadmacska okoz jelentős problémát egy ritka, értékes és nagyon sérülékeny zsákmanyfaj állományában? Ezekben az esetekben nem lehet előre, általános érvényű szabályokat kitalálni. A döntés minden alkalommal egyedi mértékelésen és adatgyűjtésen kell, hogy nyugodjon, melyben csak az a fontos, hogy letális megoldásokat nem választhatunk.

A ragadozó gazdálkodási esősorban tudatossága, ellenőrizhetősége, és a vadgazdálkodás esetében a pénzügyi megtérülése különbözteti meg az irtástól vagy a gyérítéstől. Azaz:

- jól meghatározott cél érdekében történik,
- megbizható biológiai és helyi ismereteken nyugszik,
- idejében, módszereiben megtervezett, összehangolt,
- eredményessége ellenőrzött,

1. ökonómiaiág értékelhető.
3.6. Miért van szükség ragadozógazdálkodásra?

3.6.1. Az eddigi gyakorlat értékelése

Ám kétséges, hogy valójában mi valósult meg mindebből a gyakorlatban Az elmélet és a gyakorlat közötti különbség okait viszonylag könnyű megtalálni.

A vadgazdálkodásban a siker elérésének egyre gyakoribb eszközei az állattenyésztési módszerek alkalmazása lett. Néhány százzal több fácán kibocsátásával, a fáradáságos ragadozógyérítés mellőzésével is nagy terítékeket lehetett elérni. Az intenzív tartástechnológiák nemsokára más irányú képzettséget és hozzáállást követelték meg a vadgazdálkodás gerincét jelentő hivatásos vadászoktól, így kevesebb idejük is maradt a ragadozók gyérítésére. Mára az a helyzet alakult, hogy a ragadozók intenzív gyérítését már részben elfelejtedtek, miközben az intenzív tenyészeti technológiák részben anyagi, részben természetvédelmi okok miatt visszaszorulnak.

A ragadozók gyérítése amúgy is körülményesebbé vált a méréseinek majd az ölőcsapdák betiltásával (Heltai és Szemethy 2000). Ráadásul egyre több fajt nyilvánítottak védetté, ami további körültekintést kivánt meg a vagazgazdálkodóból. A ragadozók gyérítésére való ösztönzés megmaradt a frázisok szintjén. Hamis képet alakított ki az is, hogy a vagazgazdálkodók valós eredményességét, ragadozógyérítésük hatékonyságát nem lehetett lemélni.

A ragadozógyérítés valós hatékonyságát legjobban egy viszonyszámmal, a gyérítési rátával lehetne jellemezni, ami nem más, mint a teríték és az aktuális törzsállomány nagyságának hányadosa. Egyértelmű, hogy egy 100 darabos éves
rőkateríték jelenthet nagyon jó, hatékony gyérítést, amennyiben a koslatáskori törzsállomány 30 egyed, de jelenthet nagyon gyengést is 200-as törzsállomány esetén.

Az éves vadgazdálkodási jelentésekenak 2005-ig csak a terítékedatok álltak rendelkezésre. Az állomány nagyságokat viszont nem kellett jelenteni. Többek között ezért is gyűjtöttük ezeket az adatokat 1988 és 2006 között kérdőíves felmérések segítségével. Nyilvánvaló, hogy a terítéket az állománynagyságon kívül más tényezők is, mint pl. az engedélyezett gyérítési módszerek, a gazdálkodó érdekeltsége, a hivatásos vadászok leterheltsége stb., erősen befolyásolják, ezért a teríték nem követi szükségszerűen a ragadozóállomány változásait.

<table>
<thead>
<tr>
<th>Év</th>
<th>állománysűrűség (db/1000 ha)</th>
<th>terítéksűrűség (db/1000 ha)</th>
<th>gyérítési ráta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>4,39</td>
<td>3,15</td>
<td>0,72</td>
</tr>
<tr>
<td>1990</td>
<td>5,09</td>
<td>3,48</td>
<td>0,68</td>
</tr>
<tr>
<td>1994</td>
<td>5,87</td>
<td>3,52</td>
<td>0,6</td>
</tr>
<tr>
<td>1995</td>
<td>6,30</td>
<td>3,88</td>
<td>0,62</td>
</tr>
<tr>
<td>1997</td>
<td>7,52</td>
<td>4,48</td>
<td>0,6</td>
</tr>
<tr>
<td>1998</td>
<td>8,20</td>
<td>4,8</td>
<td>0,59</td>
</tr>
<tr>
<td>2000</td>
<td>8,40</td>
<td>6,5</td>
<td>0,77</td>
</tr>
<tr>
<td>2001</td>
<td>9,2</td>
<td>6,9</td>
<td>0,75</td>
</tr>
<tr>
<td>2002</td>
<td>9,47</td>
<td>8,2</td>
<td>0,86</td>
</tr>
<tr>
<td>2003</td>
<td>7,95</td>
<td>6,9</td>
<td>0,86</td>
</tr>
<tr>
<td>2004</td>
<td>7,45</td>
<td>6,1</td>
<td>0,82</td>
</tr>
<tr>
<td>2005</td>
<td>7,50</td>
<td>6,2</td>
<td>0,83</td>
</tr>
<tr>
<td>2006</td>
<td>7,76</td>
<td>5,4</td>
<td>0,69</td>
</tr>
</tbody>
</table>

Hasonló összefüggést kapunk, ha az egyes megyékben elért gyérítési rátát vizsgáljuk az állomány sűrűségének függvényében (16. ábra; Szemethy és Heltai 2000, Szemethy és
Az állomány sűrűségével fordítottan arányos, inverz függvény szerint csökkenő gyérítési ráta azt jelenti, hogy a növekvő rókaállomány mellett a vadászok arányaiban egyre kevesebb rókát ejtenek el (!). Ez a jövőre kivetítve azt eredményezi, hogy a rókaállomány egyre jobban kiszabadul a vadászok ellenőrzése alól, a még oly látványosan növekvő terítékek sem tudják a növekedését korlátozni.

rókagyérítés hatékonysága rossz, az állomány szabályozásához elégtelen! A minimálisan kivánatos teríték a jelenlegi mintegy három-négyszerese lenne.

A gyérítési rátának az előbbi számításokon alapuló értékelése számos természeti folyamatot nem vesz figyelembe. Így többek között azt sem, hogy nem minden felnőtt szuka vesz részt a szaporodásban és természetesen az alomszám sehol sem átlagos, hanem a területre jellemző és nem minden megszületett kölyök éri meg a felnőtt kort. Három alföldi területen azonban ellenőrizni lehetett a gyérítési ráta elméleti értékeit és hatását (Heltai és Szabó 2008). Ezekben a területeken magunk végeztük el a létszámbecsülést, és a gyűjtött tetemekből folyamatosan végeztünk populációdinamikai vizsgálatokat: meghatároztuk a terület jellemző koreloszlását, ivarányát, a szaporodásban résztvevő szukák arányát, a szaporító szukák átlagos szaporulatát is. A három vizsgált terület közül kettőn az általunk becsült állománysűrűség mind az országos, mind a nagytérségi szintre jellemző átlag alatt volt. Ennek valószínűsíthető oka, hogy ezek a területeken évek óta kitartó és erős ragadozógyérítés folyik. A harmadik vizsgálati helyen azonban az állománysűrűség jelentősen meghaladta a másik két területen és az országosan becsült értékeket is. Miután a területeink között a róka szempontjából jelentősnek tekinthető élőhelyi különbségeket nem ismerünk, feltételezhető, hogy a magasabb állománysűrűség a korábbi évek elégtelen ragadozógyérítésének köszönhető. A területenként becsült átlagos szaporulat mindenhol meghaladta az országos átlagot, és magasnak tekinthető a nem szaporító szukák aránya is. A szaporulat nagysága a kedvező élőhelyi viszonyokkal magyarázható, a nem szaporodó (inaktív) szukák pedig tartalékot (puffer kapacitás) jelentenek a rókaállomány számára. Azaz ezek az egyébként egészséges egyedek az állomány jelentős csökkenése esetén be tudnak kapcsolódni a szaporodásba. A gyérítési rátán alapuló számítás lényege, hogy az állománycsökkenéséhez legalább az adott terület szaporulatának mennyiségét terítékre kell tudni hozni. Eredményeink azt mutatják, hogy a három terület közül csak egy helyen tudtak a növekménynél egyértelműen több egyedet terítékre hozni, mellyel valószínűleg az állomány további kismértékű csökkenését érték el. A második vizsgálati területen az adatok alapján az állomány szinten tartása, míg a harmadikon további állománynövekedés valószínűsíthető. Ugyanakkor a gyérítési ráta értékeit az egyes területeken mért adatokkal összevetve látható, hogy – az elméleti modellel ellentétben - az eddig feltételezettél alacsonyabb erélyű gyérítés is sikeres lehet. Ennek az az oka, hogy az elméleti számításnál a természetes elhullás hatását nem vettük figyelembe. Az országos átlag alapján korábban egyértelműen csak a 2 feletti gyérítési rátát tartottuk elfogadhatónak. A terepi vizsgálatok eredményei – a szaporodásban
valóban résztvevő szukák arányának és a területre jellemző szaporulat nagyságának figyelembe vételével – arra engednek következtetni, hogy az értékelést egy finomabb bontású, hármas skála alapján célszerűbb elvégezni:

- a gyérítési ráta kisebb, mint 1,5: a gyérítés elégtelen, a róka állományát nem a gyérítés szabályozza, állománya növekedés az élőhely minőségének függvényében várható;
- a gyérítési ráta 1,5 és 2 között: a gyérítés intenzitása valószínűleg elegendő a további növekedés megakadályozásához;
- a gyérítés ráta több mint 2: a gyérítés megfelelő intenzitású, az állomány csökkenhet.

Az alacsony gyérítési ráta egyik oka a gyérítési módszerek egyoldalúsága, a lőfegyverre alapozott módszerek túlsúlya a hatékonynabb és/vagy az állomány sűrűségét jobban követő kotorékozásával és csapdázással szemben.

Mindezek mellett figyelembe kell venni azt is, hogy eredményes ragadozó gazdálkodást csak nagy területen, összehangolt és folyamatos munkával lehet elérni. Az egyedi kisterületet érintő, vagy az alkalmanként fellángoló gyérítési kampányoknak általában nincs sok és tartós eredménye van.
3.6.2. Az alapállapot felmérés és a biológiai, ökológiai alapismeretek fontossága

A gazdálkodás tartósan csak akkor lehet sikeres, ha megbízható, objektív módszerekkel gyűjtött adatokon nyugszik. A ragadozók esetében, pl. fontos ismernünk táplálékválasztásukat és ennek változásait az év folyamán. Ezek alapján nyilvánvaló, hogy a róka létszámát akkor kell a legkisebbre csökkenteni, amikor ténylegesen az apróvad teszi ki táplálékának jelentős részét. Ez a tavasz és a nyár eleje, amikor például az utódgondozó szuka jelentős mennyiségű apróvadat zsákmányol. Ósszel-télen az apróvad aránya lényegesen kisebb a róka táplálékában.

Természetesen, más a helyzet a ritka, veszélyeztetett zsákmányállatfajok esetében. Ekkor ugyanis minden egyed elveszése rendkívül káros, ezért ilyen esetben folyamatosan minimális szinten kell tartani minden veszélyeztető tényezőt, így esetleg védett ragadozók létszámát is. Ismét hangsúlyozzuk, hogy ezekben az esetekben célirányos élőhely-gazdálkodás nélkül nemcsak a kérdés nem kezelhető érdemben, de társadalmi ellenállás is felmerülhet a természetvédelmi oltalmal alá eső ragadozó – szakmailag indokolt gyérítése kapcsán. Ezekben az esetekben a tervezett intézkedéseknek meg kell felelnie az Élőhelyvédelmi Irányelvet, amely lehetővé teszi az apróvad szabályozását (ld. a későbbi jogi fejezetben).

Fontos ismerni a faj populációdinamikájában azt a pontot, ahol leghatékonyabban vagyis a legkisebb ráfordítással a legnagyobb eredményt elérve tudunk beavatkozni. A legérzékenyebbek veszteséget szinte mindig a kölykezés és az utódgondozás idején lehet a rókapopulációra mérni a kotorékok vagy almok, elpusztításával. A csökkenésre a megüresedő helyekre történő bevándorlással válaszol a rókaállomány. Ez a folyamat viszonylag lassú, tehát ez az ellenhatás egy kevésbé intenzív, de folyamatos gyérítéssel kivédhető. Fontos megjegyezni, hogy az üres terület elfoglalása csak akkor történhet meg, ha van honnan egyedeknek érkeznie. Tehát csak akkor, ha a környéken az elhanyagolt létszámapasztás miatt magasabb sűrűségű rókaállományok elnék. Eredményes gyérítést csak nagy, lehetőleg természetes akadályokkal határolt területen, összehangoltan lehet végezni. Erre szükség esetén – a szomszédok védelme érdekében – a ragadozók gyérítését elhanyagoló vadgazdálkodókat megfelelő eszközökkel (pl. a legkisebb tavaszi rökateríték előírása, ennek elmaradása esetén a terítékre hozható apróvad mennyiségének csökkentése) rá kell
kényszeríteni. Ennek a beavatkozásnak természetvédelmi hozadéka is van, ugyanis mérsékli a harisra, a fűje, a tűzokra, a vízimadarakra és más fajokra nehezedő zsákmányolási nyomást.

Talán a legfontosabb annak ismerete, hogy mennyi ragadozó van a területen, mekkora a törzsállomány és mekkora a szaporulat. Ezeket a róka esetében viszonylag egyszerűen meg lehet becsülni. A szaporodó törzsállomány nagyságát legkönnyebben a kölykezési időszak elején, a lakott kotorék sokszínűségétől függően számának rendszeres felmérésével, és a kölykezési időszak folyamán a törzskülönállás úgy jelenik meg, hogy néhány hét után meghatározott. Itt is, mint minden becslésnél fontos, a megbízhatóság és az ellenőrizhetőség. A kotorékbecsülést vagy a teljes terület megtervezett rendszer szerinti bejárásával vagy a sávos becslés módszerével kell elvégezni. Ez utóbbival egy nyolcezer hektáros vadászterület bejárása egy ember négy-öt napos munkája. Az így kapott kotorékszámot kettővel szorozva kapjuk a törzsállomány nagyságát (Heltai és Mtsai. 1992, Heltai és Pusztai 1992, Szemethy és Heltai 2001). Fontos rá emlékezni, hogy ez a nem szaporító felnőtt egyedek miatt valószínűleg alulbecsülés, tehát ennél csak több róka lehet a területen!

A rókaállomány növekedését a szaporulat adja, tehát a szinten tartáshoz a szaporulatnak megfelelő mennyiséget kell eltávolítani. A szaporulat nagyságának becsülete a kotorékből talált kölyök száma, vagy a szukák boncolásával a méhászavarban a kölykezés után hosszú ideig (kb. másfél évig) látható placentahégek számlálásával megbízhatóan elvégezhető.

A gyérítés gazdaságosságának megítéléséhez ismernünk kell, hogy a ragadozók jelenlété következtében mekkora a ténylegesen elmaradt haszon, vagyis a teríték csökkenése. Ezt sem spekulációk, hanem a zsákmánymaradványok, vagy a táplálékelemzések, vagy leginkább a különböző ragadozószármazások esetén, illetve területek apróvadterítések összehasonlításával kapjuk.

3.6.3. A ragadozó gyérítés megtervezése és végrehajtása

A tudatos adatgyűjtés és a terület ismeretében meghatározható az ott előforduló ragadozó fajok, az általuk veszélyeztetett fajok és kritikus időszakok. A beavatkozás, vagyis a gyérítés ezeknek az adatoknak az ismeretében válik tervezhetővé.

Védett ragadozók bizonyíthatóan jelentősebb kártétele esetén a területileg illetékes természetvédelmi hatóság engedélyének birtokában elvéve erősége lesz és a befogott egyedek áttelepítése (transzlokáció) oldható meg. A csapdázást a veszélyeztetett
területen már a téli időszakban meg kell kezdeni és folyamatosan végezni kell. A befogott és áttelepített egyedeket érdemes megjelölni, hogy ellenőrizhetővé váljon az áttelepítés sikeressége. Engedély hiányában a védett fajok kártétele ellen nem lehet fellépni.

Az őszi, téli idényben vadászható menyétfélé ragadozókkal szemben a fegyveres gyérítés csak nem teljesen hatástalan. A védeni szándékozott területek folyamatos csapdázásával viszont sikeresen felléphetünk velük szemben. A vadászati idényen kívül a befogott egyedeket, a védett fajokhoz hasonlóan esetleg áttelepíthetjük. Mivel e fajoknak általában mozgáskörzetük és napi mozgásuk és kicsi, ezért általában 2-3 kilométeres távolságból történő áttelepítésük is hatásos lehet, az áttelepítésekkel kapcsolatos, korábban részletezett fenntartásaink mellett.

A leggyakoribb és nyilvánvalóan a legtöbb gondot okozó róka esetében már nemcsak a védekezés módját, hanem annak mennyiségét, időzítését és eszközeit is pontosan megtervezhetjük.

A gyérítendő mennyiség függ a terület róka törzsállományának nagyságától (a kotorékbecslés/számlálás eredményéből számolva) és a szaporulat nagyságától valamint a kitűzött céltól. A törzsállomány szinten tartásához a szaporulatnak megfelelő mennyiséget, csökkentés esetén ennél többet kell kivenni a területről.

A gyérítés súlypontja az év első felében kell, hogy legyen. A beavatkozást megkezdhetjük már a koslatáskor, az utolsó időszak, pedig az önállóan vadászó fiatalok gyérítése kell, hogy legyen. A legerősebben a kotorékok használatának csúcsán kell végezni munkánkat, mert ekkor leszünk a legeredményesebbek.

Az időszakon és a mennyiségen túl előre meg kell tervezni, hogy a rendelkezésre álló lehetőségek közül melyeket és hogyan használunk az eredményesség előrehaladásától. Ehhez érdemes tudni, hogy a csapdázást és a szaporulat nagyságától valamint a kotorékozást a kölyöknevelés idején lehet a leghatékonyabban használni. A fegyveres gyérítésnek folyamatosnak és intenzívnak kell lennie, a reflektor használatához az engedélyt meg kell kéni.

A vadászati eredményesség szempontjából a gyérítési módszerek két típusát különböztethetjük meg: a sűrűségfüggő és a sűrűségtől független gyérítési lehetőségeket.

Az első csoportba azok a vadászati módok-eszközök tartoznak, melyek sikeressége jelentősen függ a célzott faj egyedsűrűségétől. Ilyenek a különböző csapdázási és mérgeszési eljárások (utóbbi tiltott). Mindegyiknél igaz ugyanis az, hogy növekvő létszám esetén nagyobb esély lesz arra, hogy a letett csapdába belemenjen a ragadozó vagy, hogy a
kitett csalifalatot felvegye. Részben idetartozónak vehetjük a kotorék ismeretére alapozott vadászati módokat (ugrasztás, kiásás), mivel a lakott kotorékok száma növekszik az egyedszámmal (Vos 1995). Nem szabad elfelejteni, hogy ebben az esetben is – akáracsak a csapdázásnál – fontos tényleg a terepismeret, azaz a kotorékok folyamatos keresése és ellenőrzése.

A fegyverre alapozott gyérítés (hajtás, hívás, lesvadászat vagy cserkelés) jelentős mértékben független az egyedsűrűségtől. Eredményességét sokkal inkább meghatározza a vadászok száma, a ragadozók gyérítésére fordított idő, a lőkészség, az adott pillanatban nálsuk lévő lőszerek száma stb. (Szemethy és Heltai 2000).

A vadgazdálkodók elenyészően kis része alkalmas ládacapdát, de a kotorékebek használata sem tekinthető elterjedtnek (Szemethy és mtsai. 2001). Pedig egyrészt mind a csapdázás, mind a kotorék kutyák használata a vadászati kultúra része, másrészt nem panaszkodhatnának a vadgazdálkodók és részben a természetvédelmi kezeléseket végző szakemberek sem addig, míg a rendelkezésre álló eszközöket sem használják ki.

Az utóbbi időben tapasztalható ragadozók, azon belül is elsősorban a róka létszámnövekedése, és az ebből adódó problémák megkövetelnek, hogy a vadászható kártevő fajok létszámát minél hatékonyabban, sűrűségközvetésékké lépést tartva tudjuk gyéríteni. Ehhez elsősorban a sűrűségfüggő módszerek ismeretére és használatára lenne szükség. Az idetartozó eszközök és módszerek közül azonban a mérgezés, a különböző típusú lábfogó vasak, tompított vasak, csapóvasak és hurkok használatát a vadászati törvény (1996. évi LV. törvény) és a hozzákapsolódó végrehajtási rendeletek tiltják, még abban az esetben is, ha az eszköz élve fogja meg a kiszemelt vadat. Hasonlóan igaz ez a füstölésre és a politanol használatára is. Tudomásul kell venni, hogy a jövőben nem várható egyetlen mérgező hatású készítmény használata tvalazónak szabadterületi engedélyezése sem. A vadászati törvény 2004. októberi változása (1996. évi LV. Törvény 30. § (1) bekezdés) után azonban jelentősen megváltozott a csapdázás szabályozása. A csapdázás során már csak a közösségi jog és a nemzetközi egyezmények korlátait kell figyelembe vennünk, azaz megszűnt az az állapot, hogy a magyar vadászati törvény ezeknél szigorúbb előírásokat tartalmaz. Tehát a sűrűségfüggő eszközök közül alkalmazható az élvefogó csapdázás, akár élő csali használatával és a közösségi joggal megfelelő esetekben akár a szelektív ölőcsapdák is újra alkalmazhatók. Elterjedésüket innentől kezdve elsősorban a módszerek ismeretlensége, eredményességének megkérőjelezése, illetve az eszközök hiánya.
akadályozzák (kereskedelmi forgalomban szinte egyáltalán nem vagy csak nagyon drágán vásárolhatók csapdák).

Az új lehetőségeket csak jól átgondoltan és megfelelő körülmények között szabad alkalmazni. Az élő csali használata esetén továbbra is TILOS a csali állatnak szenvedést okozni! Azaz, a csapdában vagy azon kívül zárható kertebbe, megfelelő mennyiségű és minőségű, rendszeresen cserélt ivóvízzel és takarmánnyal, valamint bűvöhellyel vagy takarással kell ellátni. Csaliállatnak például az átható szagú házi egér alkalmazas.

Az ölőcsapda semmiképpen nem lehet csapóvas, vagy hurok! A ragadozót szenvedésmentesen, gyorsan és szelektíven kell tudni megölni! Ez azt jelenti, hogy hazánkban már alkalmazott ölőcsapdák körül a testszorító és a hattyúnyak csapdák (mivel gyorsan ölnek), ha a szelektivitás megoldható alkalmazhatók. Az elsősorban kutyafélék fogására sikeresen alkalmazható hattyúnyak csapdák azonban nem alkalmazhatók olyan élőhelyeken, ahol az egész évben vadászható kutyaféle ragadozók mellett (sakál, róka), a farkas előfordulására is számítani lehet. Csak a csapda gondos kihelyezésével lehet elérni a védett fajok, vagy a vadászható fajok tilalmi időben történő megfogását. Az állattartó telepek állományainak védelménél az ölőcsapdák egyszerűbben használhatók, tekintve, hogy ott a szelektivitást elősegítő kihelyezés lényegesen könnyebb (Heltai és Farkas 2010).

Nem szabad elfelejteni azt sem, hogy az alkalmankénti fellángolásoknak több a kára, mint a haszna. Ezért, ha egyszer elkezdünk a tervszerű és következetes ragadozó gyérítést, akkor azt hosszú időn keresztül kell folytatni. Tilos törvénytelen eszközöket és módszereket, valamint az állatoknak szenvedést okozó megoldásokat!

3.6.4. Ellenőrzés

A ragadozógazdálkodást végző területek az apróvad teríték nagysága, a törzsállomány létszáma, valamint a rókasűrűség változásán keresztül folyamatos és gyors visszacsatolást kapnak munkájuk sikereségéről. Hasonló módon a védett zsákmányfajok érdekében végzett gyérítésnek, a lehetséges zsákmányfaj állományváltozásában kell látnunk az eredményét.

Kevésbé kedvező a helyzet, ha alacsony állománysűrűségű fajok – pl. túzok, fogoly, fürj, haris, cigányréce – védelmében avatkozunk be. Ilyenkor, éppen a kezdeti alacsony előfordulási gyakoriság miatt, rövidtávon a javulás, növekedés csak igen kismértékű, ami ezért nehezen mérhető és észlelhető. Ez azonban nem jelenti a ragadozógazdálkodás
eredménytelenségét, s nem vezethet a munka feladására sem, hiszen a kis létszámú, veszélyeztetett állományok hosszútávú megőrzése esetében minden pozitív hatás, gyakran a szintentartás is számít.

3.6.5. A gyérítés gazdaságosságának értékelése

Az egyik legfontosabb, ennek ellenére az egyik legelhanyagoltabb feladat a gazdálkodás, vagy a beavatkozás gazdasági eredményességének meghatározása. Fel kell tennünk olyan kérdéseket, mint: megerôte?, erőteljesebb gyérítés kell?, arányban áll-e a ráfordítás az eredménnyel?, kevesebben ráfordítás sem rontja a nyereségességet? Ezek megválaszolásához, ismerni kell a ragadozógyérítés költségeit, és az annak hatására megnövekedett bevételt.

Fontos, hogy sokszor a nyereség nem vagy nemcsak pénzben mérhető. Egy veszélyeztetett vadfaj fenmaradásának biztosítása, állománynövelésének költségei csak a jövőben térülnek meg, sok esetben a mi és az utódnemzedékek számára is életbeli minőségüvé váló (egészségesebb) környezetben fejezhető ki az eredmény.

Pénzben hasonlóan nem kifejezhető eredmény, hogy a ragadozók elviselhető szinten tartásával csökkennek azok a ragadozó-ember konfliktusok, amelyek valahol a vadászat, a vadgazdálkodás és esetenként már a természetvédelem megítéléseit is rontják. Ugyanakkor egy eredményes, hatékony ragadozógazdálkodás alapot teremthet annak bemutatására, hogy a ragadozóállomány szabályozása a vadgazdálkodás érdekeit túl szélesebb társadalmi - természettudományi, humán- és állategészségügyi stb. - érdekeket is szolgálhat, így ehhez a vadgazdálkodóknak nagyobb erkölcsi és anyagi támogatást kell kapniuk.

3.7. Az emlős ragadozók helyzetére és megítélésére vonatkozó legfontosabb hazai és nemzetközi jogi források

Az egyes ragadozó fajok pillanatnyi jogi helyzetét, azaz védettségét vagy vadászhatóságát az 1996. évi LIII. törvény a természet védelméről (továbbiakban: Természettudományi törvény) és az 1996. évi LV. törvény a vad védelméről, a vadgazdálkodásról, valamint a vadászatról (továbbiakban: Vadászati törvény) szabályozza.

A Természettudományi törvény 24. §-ának (2) bekezdése szerint: “A miniszter rendeletben nyilvánítja védetté, illetve fokozottan védetté a természeti értéket (pl. vadon élő
szervezetet, életközösséget), továbbá fokozottan védett a területet”. E törvényi rendelkezéseknek megfelelően a környezetvédelemért felelős miniszterium minisztere rendeletben határozza meg a védett és a fokozottan védett növény- és állatfajok, valamint az Európai Közcsoosségbén természetvédelmi szempontból jelentős növény- és állatfajokat, melyeket jegyzékben tesznek közzé (A védett és a fokozottan védett növény- és állatfajokról, a fokozottan védett barlangok köréről, valamint az Európai Közcsoosségbén természetvédelmi szempontból jelentős növény- és állatfajok közzétételéről szóló 13/2001. (V. 9.) KöM rendelet, módosítva a 100/2012 (IX.28.) VM rendelet által).

A Vadászati törvény a már az 1920-as években kialakult gyakorlatnak megfelelően a vadászható fajok közzétételét szintén a törvény végrehajtási rendeletébe helyezi. Ennek oka, hogy a miniszteri rendeleteket szükség esetén a törvényeknél lényegesen rugalmasabban lehet változtatni. A Vadászati törvény 1. § (2) bekezdése szerint: “A földművelésügyi miniszter - a természetvédelemért felelős miniszterrel egyetértésben - rendeletben állapítja meg a Magyarországon honos, előforduló, engedélyteljes vagy átvonuló, természetvédelmi oltalom alatt nem álló nagy vadaknak, illetve apróvadaknak minősül vadászható állatfajokat.”

A Vadászati törvény 1. §-hoz kapcsolódóan a 79/2004. (V. 4.) FVM rendelet (Vhr.) 1. § teszi közzé a vadászható állatfajokat (röviden vad). A ragadozó emlősök a Vhr. 1. § (1) bekezdés bb) pontja egyéb apróvadfajok megnevezés alatt sorolja fel:

1. Házi görény (Mustela putorius),
2. Nyest (Martes foina),
3. Borz (Meles meles),
4. Róka (Vulpes vulpes),
5. Aranyakál (Canis aureus),
6. Nyestkutya (Nyctereutes procyonoides),
7. Mosómedve (Procyon lotor),
8. Aranyakál (Canis aureus).

A Vhr. 1. § (2) pontja szerint a „Közösségi jelentőségű vadászható állatfajokat”, melyek között 14. az aranyakál (Canis aureus).

A Vhr. 27. § (1) A vadászati idényeket a Vhr. 5. számú melléklet tartalmazza, mely szerint az egyes emlős ragadozók vadászidényei:

c) Egyéb apróvadfajok
Róka, Nyestkutya, Mosómedve,
Aranyakál, Nyest, Mosómedve,
Házi görény, Borz egész évben
Házi görény, Borz július 1.-február utolsó napja

A Berni egyezmény három fő cél szolgál:

- A vad növény- és állatvilág, valamint élőhelyeik védelme.
- Az államok közötti együttműködés elősegítése e kérdésekben.
- Különös figyelem fordítása a-veszélyeztetett és sérülékeny fajokra, beleértve ebbe a veszélyeztetett és sérülékeny vándorló fajokat is.

A Berni egyezménynek jelenleg mintegy 45 európai és afrikai állam, valamint az Európai Unió a teljes jogú tagja, továbbá számos állam tanácskozási joggal vesz részt a munkájában. Az egyezményt aláíró államok többek között vállalták, hogy védik a vad flóra és fauna tagjait és élőhelyeiket; különös hangsúlyt adnak az I. és a II. függelékben felsorolt vad növények és állatok, valamint a III. függelékben szereplő állatfajok védelmének. Az egyezmény függelékei közül az emlős ragadozók és a vadászat gyakorlása szempontjából a következőknek van jelentősége:

- **II. függelék: szigorúan védett állatfajok.** Az itt szereplő fajok különleges védelme érdekében a szerződő felek megteszik a szükséges jogi és adminisztrativ intézkedéseket. Különösen tiltott: “a szándékos tartás és szándékos elpusztítás összes formája; a szaporodó és pihenőhelyek szándékos rongálása vagy elpusztítása; a vadon élő állatok szándékos megzavarása, különösen a szaporodási-, ivadéknevelő- és téliádom-időszakokban; ezen állatok akár élő, akár holt állapotban történő birtoklása és belső kereskedelme...”. A farkas, a barnamedve, a molnárgörény, az európai nyérc, a vidra és a vadmacska szerepel e függelékben.

- **III. függelék: védett állatfajok.** A részes államok az itt szereplő fajok védelmének biztosítása érdekében e fajok bárminemű hasznosítását szabályozni fogják. Az intéz-
kedések tartalmazzák: “a tilalmi időszakokat és/vagy más egyéb, a használatot szabályozó eljárást; a hasznosítás időszakos vagy helyi tiltását; a vadon élő állatok élő vagy holt állapotban történő kereskedelmének (...) megfelelő szabályozását.”. E függelékben szerepel a hermelin, a menyét, a nyuszt, a borz és a hiúz.

- IV. függelék: Az elejtés és elfogás (csapdázás) tiltott eszközei és módozatai. Vadászati és vadgazdálkodási szempontból a IV. függelék azért fontos, mert csak az ebben nem tilalmazott módszereket lehet a gyakorlatban alkalmazni. Az egyezmény elsősorban a nem szelektív, tömeges, a vaddal nem etikus és a kegyetlen módszerek alkalmazását kivánja megakadályozni, mint: hurkok; csaliállatként használt vak vagy megcsonkított élő állatok; magnetofonok; elpusztításra és elkábításra alkalmas elektromos eszközök; mesterséges fényforrások; tükrök és más fénylő eszközök; a cél megvilágítására szolgáló eszközök; éjszakai vadászatra alkalmas optikai eszközök, u. m. elektromos képmagnó vagy képátalakító; robbanóanyagok; hálók; csapdák; mérég és mérgezett vagy kábító csalétek; gázosítás és kifüstölés; félautomata vagy automata, olyan tárral rendelkező löfffffffajok, amelyek több lőszer befogadására alkalmasak, mint ami két ismétléshez szükséges; repülőgépekeket felhasználó módszerek; mozgásban lévő gépjárművek.

A Berni Egyezmény kapcsán fontos kiemelni, hogy mind az Európai Unió, mind pedig hazánk természetvédelmi és vadászati jogi szabályozásának fejlődését alapvetően meghatározta. Az Európai Unió esetében a két természetvédelmi irányelv és a Berni Egyezmény közötti teljes átfedés látható. A magyar vadászati jog fejlődésében elég csak a vadászható állatfajok körének, illetve a vad elejtésére és elfogására vonatkozó szabályozás 1990 óta bekövetkezett számos változására utalni. Lényegében ez a folyamat alapozta meg, hogy az uniós csatlakozás idején a magyar vadászati jogszabályok szinte teljes egészükben harmonizáltak az EU joganyaggal (Csányi, 2005)

esetében az a cél, hogy azok “kereskedelmét hatékony ellenőrzés alá lehessen vonni”. Az Európai Unióban a CITES alkalmazását a Tanács 338/97/EK (1996. december 9.)

A vadon élő állat- és növényfajok számára kereskedelmük szabályozása által biztosított védelemről című tanácsi rendelet és annak mellékletei biztosítják. A tanácsi rendeletek olyan uniós jogszabályok, melyeket minden országnak teljes egészükben azonos módon kell alkalmaznia. Ennek ebben az esetben az az oka, hogy az Uniós Szerződés a külkereskedelemmel kapcsolatos minden kérdést az EU szintjén kezel és ezekben a kérdésekben a tagállamok önálló döntési lehetőségekkel nem rendelkeznek.

Az Európai Unión belül a vad emlősállatokra vonatkozó legfontosabb irányelv a Tanács 92/43/EGK irányelve (1992. május 21.) a természetes élőhelyek, valamint a vadon élő állatok és növények védelméről (HL L 206, 22.7.1992, o. 7) (röviden Élőhelyvédelmi Rendelés). Alapvető célja a természetes élőhelyek, valamint a növény- és állatvilág biodiverzitásának megőrzése. Az ehhez kapcsolódó intézkedéseknek figyelembe kell venni a gazdasági, szociális és kulturális követelményeket, valamint a helyi sajátosságokat is (Csányi 1998). A rendelethez összesen hat melléklet tartozik. Az egyes fajok a II., IV. és V. mellékletbe vannak besorolva. Az egyes mellékletek az alábbiak:

- **II. melléklet**: „Közösségi jelentőségű állat- és növényfajok, amelyek megőrzéséhez különleges természetmegőrzési területek kijelölése szükséges” A hazánkban is előforduló fajok közül a farkas (kivéve a finn, az észak-spanyol és az észak-görög populációkat), a vidra és a hiúz (kivéve a finnországi populációt) tartozik ide.

- **IV. melléklet**: „Közösségi jelentőségű állat- és növényfajok, amelyek szigorú védelemre szorulnak” A farkas és a hiúz tartozik ide, de szintén kivételt képezve a II. mellékletben is nevesített populációk, továbbá a vidra és a vadmacska szerepelnek rajta a hazai ragadozók közül.

- **V. melléklet**: „Közösségi jelentőségű állat- és növényfajok, amelyeknek a természetes környezetből való kivonása és felhasználása igazgatási intézkedések tárgya lehet” A farkas és a hiúz korábban nevesített szigorú védelmet nem igénylő állományai, az aranysakál, a közönséges görény és a nyuszt tartozik ebbe a kategóriába.

Az Irányelv **VI. melléklete** Az elfogás, az elejtés és a szállítás tiltott módszereit és eszközeit sorolja fel, amelyben a Berni Egyezményhez hasonlóan szerepelnek a ragadozó fajok tömeges elpusztítását lehetővé tevők is:

65
„Állatok befogásának, megölésének és szállításának tiltott módszerei és eszközei
a) Nem szelektív eszközök

EMLŐSÖK
— Vak vagy megcsonkitott állatok használata csalétekként
— Magnetofon
— Ölésre vagy sokkolásra alkalmas elektromos és elektronikus eszközök
— Mesterséges fényforrás
— Tükör és más vakító eszköz
— Céltárgy megvilágítására szolgáló eszköz
— Elektromos képnagyítóval vagy képátalakítóval ellátott célzóeszköz éjszakai vadászathoz
— Robbanóanyag
— Működése vagy felhasználása körülményei folytán nem szelektív háló
— Működése vagy felhasználása körülményei folytán nem szelektív csapda
— Íjpuska
— Mérgek, továbbá mérgezett vagy altatótartalmú csalétek
— Gázosítás vagy kifüstölés
— Több mint két töltény tárolására alkalmas tárral felszerelt félautomata vagy automata
 fegyver

b) Közlekedési módok
— Repülőgép
— Mozgó gépjármű”

Az Élőhelyvédelmi Irányelv rendelkezéseinek alapvető célja az élőhelyek és a vadon
élő fajok kedvező védelmi állapotának megőrzése (fenntartása). A 14. cikk határozza meg
azokat az intézkedéseket, amiket ennek érdekében a tagállamoknak meg kell tennie:

“(1) A tagállamok, amennyiben a 11. cikkben előírt felügyelet eredményeként szükségesnek
ítéli, intézkedéseket hoznak annak biztosítására, hogy az V. mellékletben felsorolt vadon élő
állat- és növényfajok példányainak vadonból befogása illetve begyűjtése, továbbá használata
összeegyeztethető legyen kedvező védettségi állapotuk fenntartásával.
(2) Amennyiben ilyen intézkedések válnak szükségessé, azoknak ki kell terjedniük a 11. cikkben elrendelt felügyeleti tevékenység folytatására is. Az ilyen intézkedések közé különösen az alábbiak tartoznak:

— bizonyos területeken a megszerzés szabályozása,
— példányok természetes környezetükben való befogásának illetve begyűjtésének és bizonyos populációk használatának időszakos illetve helyi tilalma,
— példányok befogási illetve begyűjtési időszakának és/vagy módszereinek szabályozása,
— példányok befogása illetve begyűjtése esetén olyan vadászati és halászati szabályok alkalmazása, amelyek figyelembe veszik az érintett populációk megfelelő védelmének szempontjait,
— példányok befogására illetve begyűjtésére vonatkozó engedélyek vagy kvóták rendszerének kidolgozása,
— példányok vásárlásának, eladásának, eladásra való felkínálásának, eladási célból történő tartásának és szállításának szabályozása,
— a példányok természetes környezetük ből történő begyűjtésének visszaszorítása érdekében az állatfajok fogságban való tenyésztése és a növények mesterséges szaporítása szigorúan ellenőrzött feltételek mellett,
— az alkalmazott intézkedések hatásának vizsgálata.”

A védett emlős ragadozók esetleges kezelésének szempontjából az intézkedési lehetőségeket az Élőhelyvédelmi Irányelv 15. és 16. cikke határozza meg. Az irányelvtől való eltérés (derogáció) feltételei a következők lehetnek:

„(1) Amennyiben nincs más megfelelő megoldás és az eltérés megengedése nem befolyásolja hátrányosan az érintett fajok populációi kedvező védettségi állapotának fenntartását az elterjedési területükön, a tagállamok engedélyezhetik a 12., 13., 14. cikkben, valamint a 15. cikk a) és b) pontjában foglalt rendelkezésektől való eltérést az alábbiak érdekében:

a) a vadon élő állatok és növények, valamint a természetes élőhelyek védelme;
b) termést, állatállományt, erdőt, halastavat, vizeket és más típusú, tulajdont érintő súlyos károkat megelőzése;
c) közegészség, közbiztonság vagy más kiemelkedően fontos közérdek, beleértve a társadalmi vagy gazdasági érdekeket is, továbbá a környezet számára kiemelkedően előnyös hatás elérése;
d) az érintett fajok újbóli elszaporításával és visszahonosításával kapcsolatos kutatás és oktatás, továbbá az e célok érdekében végzett tenyésztés és nemesítés, növények esetében a mesterséges szaporítást is beleértve;
e) a IV. mellékletben felsorolt fajok korlátozott és az illetékes tagállami hatóságok által meghatározott számú példányai szigorúan ellenőrzött feltételek mellett, szelektív módon és korlátozott mértékben végzett befogásának, begyűjtésének vagy tartásának engedélyezése.

(2) A tagállamok kétévenként eljuttatnak a Bizottságnak egy, a Bizottság által meghatározott formában készült jelentést az (1) bekezdés értelmében engedélyezett eltérésekről. A Bizottság a jelentés készítésétől számított 12 hónapon belül véleményezti az eltéréseket és tájékoztatja azokról a bizottságot.

(3) A jelentés alábbiakat tartalmazza:

a) az eltérés által érintett fajok és az eltérés okai, beleértve a kockázat jellegét, adott esetben megfelelő utalással az elvetett alternatív megoldásokra és a felhasznált tudományos adatokra;
b) az egyes állatfajok befogásának vagy megölésének engedélyezett eszközei és módszerei, valamint alkalmazásuk indoklása;
c) az engedélyezett eltérések időbeli és helyi körülményei;
d) a szükséges feltételek betartásának megállapítására és ellenőrzésére, továbbá az eszközök és módszerek, az azok alkalmazására vonatkozó korlátozások, valamint az alkalmazásra jogosult szervek és a feladatot végrehajtó személyek meghatározását;
e) az alkalmazott felügyeleti intézkedések és az elért eredmények."

Bár nem joganyag, de említésre érdemes az Európa Tanács szakértőinek a faunaidegen fajokkal kapcsolatos javaslata (Orueta és Ramos 2001). A hazánkban is előforduló fajok közül idézhetők a mosómedve és a nyestkutya, ill. a szabadterületeken megjelenő kóbor állatok, mint a házi macka vagy a kutyta. Abban az esetben, ha a jövevény faj bármilyen kártétele tapasztalható a természetes állományokban, létszámuk elviselhető szintre szorítására vagy a faj teljes kiirtására (eltávolítására) kell törekedni. Ehhez a védett fajok kezeléséhez hasonló akcióterveket kell készíteni, megtervezve többek között állományaik helyzetének folyamatos nyomonkövetését és a kezelésükkel valamint lehetséges természetvédelmi és vadgazdálkodási hatásukkal foglalkozó kutatásokat. Az állományszabályozás vagy állománycsökkentés érdekében az alkalmazható eszközök és módszerek a lehető legszélesebb körűek
lehetnek, így beleértve azokba a biológiai kontrollt, a mérgezést (!), a csapdázást és a fegyveres vadászatot is.

Az IUCN Vörös Listáiban jelenleg az alábbi csoportokat használják (IUCN, 2003):

<table>
<thead>
<tr>
<th>Kód</th>
<th>Adjektív feltételezése</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>Kihalt (Extinct)</td>
</tr>
<tr>
<td>EW</td>
<td>Vadon kihalt (Extinct in the Wild)</td>
</tr>
<tr>
<td>CR</td>
<td>Kihálfelé lévő (Critically Endangered)</td>
</tr>
<tr>
<td>EN</td>
<td>Veszélyeztetett (Threatened)</td>
</tr>
<tr>
<td>VU</td>
<td>Sebezhető (Vulnerable)</td>
</tr>
<tr>
<td>NT</td>
<td>Mérsékelt veszélyeztetett (Near Threatened)</td>
</tr>
<tr>
<td>LC</td>
<td>Nem veszélyeztetett (Least Concern)</td>
</tr>
<tr>
<td>DD</td>
<td>Adathiányos (Data Deficient)</td>
</tr>
<tr>
<td>NE</td>
<td>Felméretlen (Not Evaluated)</td>
</tr>
</tbody>
</table>
A nyolcvanas években az akkori szempontrendszer szerint a veszélyeztetett fajokról Vörös Könyv készült (Rakonczay 1989). A Vörös Könyv az egyes fajokat a következők szerint csoportosította:

- **Kipusztult vagy eltűnt fajok**: “amelyeknek a XIX. század elejéig (1800-ig) visszatekintve hazánk mai területén rendszeresen szaporodó populációik éltek, de - mint ilyenek - a múlt század folyamán vagy 1935 előtt kipusztultak, azaz 50 éve rendszeres keresésük ellenére sem mutathatóak ki...” Ide sorolták be az emlős ragadozó fajok közül az aranysakált, a farkast, a barnamedvét és a hiúzt.

- **A kipusztulás (közvetlen) veszélyébe került fajok**: “Azok, amelyek rendkívül kis számban vagy elszigetelten, izolált kis állományokban fordulnak elő...”. A ma már védelmet sem élvező európai nyérc került a ragadozó fajok közül ebbe a kategóriába. A passzív védelem megszüntetésének oka egyébként az, hogy az elmúlt évtizedekben nem sikerült bizonyítani, hogy az európai nyérc a mai Magyarország területén ténylegesen, szaporodó állományokkal előfordult volna (Bihari és munkatársai 2007).

- **Aktuálisan veszélyeztetett fajok**: “Azok, amelyek kis egyedszámú populációkban élnek és állományuk, ill. elterjedési területük kimutathatóan csökken...”. A vidra és a vadmacska került fel erre a listára.

- **Potenciálisan veszélyeztetett fajok**: “Azok, amelyek elterjedési területének szegélyzónája esik hazánk területére vagy nálunk csak a fő areától többé-kevésbé izolált, szigetszerű populációkban élnek...”. A Vörös Könyv szerint emlős ragadozó nem tartozik ebbe a kategóriába.

Az újabb szempontrendszernek megfelelő értékelés és csoportosítás a hazai madárfajokra vonatkozóan a kilencvenes évek végén készült (Tóth és mtsai 1999). Az emlősök esetében hasonló munkáról nem tudunk.
4. Regionális elemzések

4.1. A mezei nyúl állomány és a környezeti tényezők vizsgálata négy megye adatai alapján

4.1.1. Az elemzések köre és az adatok forrásai

Jelen értékeléshez Békés, Csongrád, Hajdú-Bihar és Jász-Nagykun-Szolnok megye vadgazdálkodási, földhasználati, mezőgazdasági termelési és meteorológiai adatait használtuk fel, mert ezek a legfontosabb apróvadas területek és itt a legkisebb a nagyvad elemzést zavaró hatása. Az adatok köre a következő volt:

 a. Az értékelésben egyrészt bemutatjuk a 4 megye vadállomány és teríték (hasznosítási) adatainak változását, azok egymáshoz való hasonlóságát, másrészt korreláció-elemzést végzünk az értékelte jellemzők között.
 b. Az értékelte változók:
 i. Mezei nyúl gazdálkodás: mezei nyúl létszám, mezei nyúl befogás, mezei nyúl lelövés mezei nyúl hasznosítás (t), mezei nyúl hasznosítás (t-1)
 ii. Mezei nyúl és egyes vadfajok korrelációi: Vaddisznó becslés, vaddisznó teríték, dolmányos varjú (teríték), dolmányos varjú (becslés), borz (teríték), borz (becsült), róka (teríték), róka (becsült), egerérszölyv (becsült), kóbor kutya (teríték), kóbor macska (teríték)

 a. Az értékelésben korreláció-elemzést végzünk a mezei nyúl hasznosításának nagysága (db/100ha) és a vizsgált jellemzők között.
 b. 1960-2011. közötti időszak adatai kerületek felhasználásra (a termelési adatok adatsora nem folyamatos, a nyolcvanas évekig csak 5 évenkénti adatokat sikerült beszerezni).
 i. Az értékelte földhasználati jellemzők: búza területe (%), kukorica területe (%), napraforgó területe (%), árpa területe (%), burgonya területe (%), cukorrépa területe (%), szántó arány (%), gyep arány (%), mezőgazdasági terület aránya arány (%), erdő arány (%), nem művelt terület arány (%). A termelt növények
aránya a szántó terület arányában, a földhasználati adatok az összes terület arányában került kiszámításra.

ii. Az értékelt termelési jellemzők: búza termés (t/ha), kukorica termés (t/ha), napraforgó termés (t/ha), árpa termés (t/ha), burgonya termés (t/ha), árpa termés (t/ha).

a. Az értékelésben korreláció-elemzést végzünk a mezei nyúl hasznosításának nagysága és a kiválasztott meteorológiai jellemzők tavaszi időszaki (március-aprilis-május) és nyári időszaki (június-július-augusztus) értékei között.

i. Az értékelt meteorológiai jellemzők: tavaszi átlagos hőmérséklet, nyári átlagos hőmérséklet, tavaszi átlagos maximum hőmérséklet, nyári átlagos maximum hőmérséklet, tavaszi abszolút maximum hőmérséklet, nyári abszolút maximum hőmérséklet, tavaszi átlagos minimum hőmérséklet, nyári átlagos minimum hőmérséklet, tavaszi abszolút minimum hőmérséklet, nyári abszolút minimum hőmérséklet, tavaszi hőségnapok száma, nyári hőségnapok száma, tavaszi fagyos napok száma.

Az adatok forrásai a következők:

I. Vadgazdálkodási adatok: Az Országos Vadgazdálkodási Adattár (OVA) adatai.

II. Földhasználati adatok: A Központi Statisztikai Hivatal (KSH) mezőgazdasági statisztikai kiadványai táblázatkezelőben közölt értékei.

III. Mezőgazdasági termelési adatok: A Vidékfejlesztési Minisztérium Agrárgazdasági Kutató Intézet (AKI) statisztikai kiadványai közölt terület- és termésadatok.

IV. Időjárás adatok: Az Országos Meteorológiai Szolgálat (OMSZ) adatai.

A grafikonok készítéséhez Libre Office Calc (v4.0) táblázatkezelőt, a korreláció-számításhoz SPSS (v14) statisztikai programcsomagot használtunk.
4.1.2. Az eredmények bemutatása és értékelése

4.1.2.1. A mezei nyúl és a kiemelt fajok változásai az 1994-2012. közötti időszakban

Az értékelésnek ehhez a részéhez azért az 1994-2012. közötti adatokat használtuk, mert lényegében az időszak első 3-5 évében alakultak ki a vadgazdálkodás mai feltételei és a kezdeti és a végpont közötti trendek így egységes feltételek (jogi keretek, mezőgazdasági és politikai környezet) közötti változásokat mutathatnak. A változásokat ábránként értékelve a következők mondhatók:

17. ábra. A jelentett mezei nyúl állomány a különböző megyékben.

- A hasznosított mezei nyúl állomány változása (18. ábra): A négy megye változásai az emelkedések és a csökkenések tekintetében szinte azonos mintázatot követnek, ami hasonló a jelentett létszáméhoz. Kiemelhető, hogy Csongrád hasznosítási értékei
folyamatosan lényegében Békés és Jász-Nagykun-Szolnok szintjén vannak, miközben a jelentett nyúl létszáma csupán mintegy fele azokénak.

18. ábra. A hasznosított mezei nyúl állomány a különböző megyékben.

- Az élve befogott mezei nyúl létszám változása (19. ábra): A négy megye változásának mintázata a fő vonalaiban azonos képet mutat. Általában elmondható, hogy az időszak folyamán megfeleződött az élve fogott létszám, de e mögött igen nagyok az ingadozások (Békés, Csongrád, Jász-Nagykun-Szolnok). Hajdú-Bihar esetében a csökkenés csaknem folyamatos és a kezdeti 5000 pld-ról néhány százra csökkent az élőbefogás.
19. ábra. A befogott mezei nyulak száma a különböző megyékben.

20. ábra. Az elejtett mezei nyúl száma a különböző megyékben.

22. ábra. A róka elejtések száma a különböző megyékben.

23. ábra. A borz elejtések száma a különböző megyékben.

24. ábra. A kóbor kutya elejtések száma a különböző megyékben.

![Kóbor macska lelövés](image)

25. ábra. A kóbor macska elejtesek száma a különböző megyékben.

26. ábra. A dolmányos varjú elejtések változása a különböző megyékben.

- A szarkák lelövésének változása (27. ábra): A szarka esetében a folyamatos csökkenés 2006-ig tartott, ezt követően mind a 4 megyében a lelövés a kezdeti értékek harmadafelé nőtt. A szarka, mint fészkek és fiókarabló hatása a nyúlszaporulat szempontjából is felmerül (valószínűsíthető, hogy madárfészek fosztogatása jelentősebb).

27. ábra. A szarka elejtések változása a különböző megyékben.

![Egerészölyv jelentett állomány grafikon](image-url)

28. ábra. Az egerészölyv állományhelyzete a különböző megyékben.

4.1.2.2. A mezei nyúl gazdálkodási adatok változása 1994-2012. közötti időszakban

A négy értékelt megye adatait először 4-4 diagramon mutatjuk be, majd a következő fejezetben a számszerű összefüggéseket is ismertetjük.

I. Békés megye nyúlgazdálkodása

a. A jelentett létszám (becslés), a befogás és a lelővések változásai (bal felső ábra)

(29. ábra): A nyúl állomány jelentős ingadozások mellett, enyhe csökkenő trenddel jellemezhető. A befogás és a lelővés hasonlóan ingadozva változott, ezek
trendvonalai meredekkebbek. A hasznosítás átlagosan mintegy negyede a jelentett létszámnak.

c. Az adott évi jelentett létszám és az adott évi hasznosítás között pozitív, de gyenge kapcsolat van (jobb alsó ábra). Ennek oka, hogy a vadgazdálkodási egységek a nyúl létszámát az adott év február 15-ig jelentik, a hasznosítás pedig októbertől kezdődik. A hasznosítható létszám a nyúl esetében alapvetően nem a tél végi, hanem az ettől az időponttól a vadászidényig terjedő időszak eseményeinek függvénye.

d. Az előző évi hasznosítás és az adott évi jelentett létszám (becslés) közötti kapcsolat igen szoros (jobb felső ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
29. ábra. A Békés megyei nyúl állomány változása (becslés, befogás és elejtés).
II. Csongrád megye nyúlgazdálkodása

a. A jelentett létszám (becslés), a befogás és a lelővések változásai (bal felső ábra)
(30. ábra): A nyúl állomány jelentős ingadozások mellett, de stabil trenddel jellemezhető. A befogás és a lelővés hasonlóan ingadozva változott, de a lelővések egyértelmű növekvő, a befogások pedig ezzel ellentétes csökkenő trendet mutatnak. A becsles és a lelővés együtt átlagosan mintegy harmada a jelentett létszámnak.

b. Az éves lelővések és a befogások közötti pontok erősen szóródnak (bal alsó ábra).
A kapcsolat pozitív, de a szórt pontokhoz képes ez igen gyenge tendencia. Az összefüggés meggyengülése jelezheti azt is, hogy a befogás és a lelővés között ellensúlyozó hatás van, azaz amikor az élő nyúl még jobban eladható volt, akkor kevesebbet lőttek és fordítva. Az erős szóródás valószínűleg az élve fogott nyúl eladásának piaci lehetőségeitől függ.

c. Az adott évi jelentett létszám és az adott évi hasznosítás között gyakorlatilag nincs kapcsolat (vízszintes egyenes).

d. Az előző évi hasznosítás és az adott évi jelentett létszám (becslés) közötti kapcsolat igen szoros (jobb felső ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslesnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
III. Hajdú-Bihar megye nyúlgazdálkodása

a. A jelentett létszám (becslés), a befogás és a lelövések változásai (bal felső ábra)
(31. ábra): A nyúl állomány erős ingadozás mellett, de meredeken csökkenő trenddel jellemezhető. A befogás és a lelövés szintén ingadozva változott, gyakorlatilag párhuzamos trendet mutatnak (a befogás gyakorlatilag meg is szűnt). A becslés és a lelövés együtt átlagosan mintegy 15%-a a jelentett létszámnak.

b. Az éves lelövések és a befogások közötti pontok ugyan erősen szóródnak (bal alsó ábra), de a kapcsolat pozitív és határozott tendenciájú. A markáns összefüggés a két jellemző párhuzamos változásának eredménye. A szóródás valószínűleg itt is az élve fogott nyúl eladásának piaci lehetőségeitől függött.

c. Az adott évi jelentett létszám és az adott évi hasznosítás között egyértelmű pozitív kapcsolat van.

d. Az előző évi hasznosítás és az adott évi jelentett létszám (becslés) közötti kapcsolat igen szoros (jobb felső ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
IV. Jász-Nagy kun-Szolnok megye nyúlgazdálkodása

b. Az éves lelövések és a befogások közötti pontok ugyan erősen szóródnak (bal alsó ábra), de a kapcsolat pozitív és határozott tendenciájú. A markáns összefüggés a két jellemző párhuzamos változásának eredménye. A szóródás valószínűleg itt is az élve fogott nyúl eladásának piaci lehetőségeitől függött.

c. Az adott évi jelentett létszám és az adott évi hasznosítás között nagyon erős szóródás melletti pozitív kapcsolat mutatható ki.

d. Az előző évi hasznosítás és az adott évi jelentett létszám (becslés) közötti kapcsolat itt is igen szoros (jobb felső ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
32. ábra. A Jász-Nagykun-Szolnok megyei nyúl állomány változása (becslés, befogás és elejtés).
4.1.2.3. A mezei nyúl gazdálkodási adatok közötti korrelációk az 1994-2012. közötti időszak adatai alapján

Az összefoglaló táblázat megyénként a jelentett létszám és a befogás, lelövés, adott évi hasznosítás, valamint az előző évi hasznosítás közötti korrelációkat mutatja (11. táblázat). A részletes táblázatok megyénként az előbbi változók további, egymás közötti korrelációit is mutatja. Az elemzésnek ebben a részében a korrelációk tekinthetők ok-okozati összefüggéseknek is, amikor az egyik tényező változása a másik alakulását befolyásolja (erős pozitív vagy negatív kapcsolat). Az erős kapcsolat hiánya utalhat arra, hogy a várta ok-okozati összefüggést más tényezők eltorzítják és ezáltal a kapcsolat nem mutatható ki.

10. táblázat. A mezei nyúl megyénkénti jellemzői közötti korrelációk.

- A tavaszi jelentett létszám (becslés) és a befogás közötti kapcsolat: a négy megyéből háromban a kapcsolat igen gyenge és nem szignifikáns. Hajdú-Bihar megye esetében az erősebb korreláció a jelentett létszám és a befogás párhuzamos csökkenésének eredménye.
- A tavaszi jelentett létszám (becslés) és a lelövés közötti kapcsolat: Békés és Hajdú-Bihar megyében közepes erősségű, szignifikáns korreláció, a másik két megyében gyenge erejű összefüggés mutatható ki.
- A tavaszi jelentett létszám (becslés) és az adott évi hasznosítás (befogás + lelövés) közötti kapcsolat: Hajdú-Bihar megye kivételével a kapcsolat gyenge és nem szignifikáns. A gyenge összefüggés azt jelzi, hogy a jelentett létszám és a rá
következő hasznosítás között nincs megbízható kapcsolat. Ez részben az élőbefogás "kiszámíthatatlansága", részben pedig az időbeni hatások eredménye lehet.

- A tavaszi jelentett létszám (becslés) és az előző évi hasznosítás közötti kapcsolat:
 Mind a négy megyében nagyon erős szignifikáns kapcsolat mutatható ki. Ez azt jelzi, hogy a vadgazdálkodási egységek a február 15-i jelentett létszámot a megelőző év vadászati (és befogási) eredményei alapján adják meg (vélelmezik). Ezért ez ismeretlen összefüggésben van a tényleges létszámmal és az állomány indexének tekintetében arra, hogy a jelentett létszám a későbbiekben igen gyenge vagy nem következetes kapcsolatot mutat az állomány adott évi hasznosítási jellemezőivel (befogás, lelővés és a kettő összege), ezért az adott évi hasznosítási értékek mind populációdinamikai, mind a populáció – környezeti kapcsolatok vizsgálata szempontjából megbízhatóbbnak tűnnek.

4.1.2.4. A mezei nyúl gazdálkodási és a földhasználat jellemezői közötti összefüggések

A következőkben ismertetésre kerülő korreláció-elemzések a 4 megye vonatkozásában kívánják ezt a kapcsolatot bemutatni. Ezek esetében is megjegyezzük, hogy az egy-egy változópár közötti akár szoros kapcsolat nem feltétlenül jelent ok-okozati összefüggést. Az esetek jelentős részében az idősorok korrelációi egymással együtt változó (akár azonos, akár ellenkező irányban) tényezők vagy jelenségek szoros időbeni egybeesését jelzik, de nem egymástól való függésüket. Ezeket a korrelációkat azonban a megfelelő háttér összefüggéseket vagy a tényleges hatótényezőket is bemutatva, tudjuk értelmezni az a vizsgált jelenségek szempontjából is.

Mint azt az előzőekben bemutattuk, a jelentett nyúllétszámok szoros korrelációban
állnak az előző évi hasznosítások értékeivel, azaz ez az érték egy ismeretlen torzítású szám, ami a vadgazdálkodók véleményét, de nem tényleges állományfelméréseik eredményeit tükrözi. Ezért korreláció-elemzésben az adott évi nyúlállományok indexének a nyúlhasznosítást tekintettük.

A hozzáférhető mezőgazdasági adatok közül a legfontosabb kultúrák területeit (búza területe (%), kukorica területe (%), napraforgó területe (%), árpa területe (%), burgonya területe (%), cukorrépa területe (%)) a szántó terület arányában vettük figyelembe. Az összesítő táblázat a mezei nyúl hasznosítás és a legfontosabb kultúrák közötti korrelációkat megyénként mutatják; a 4 db részletes táblázat pedig megyénként az értékelt összes változó közötti kapcsolatokat mutatják. Ebben az összefüggésben megjegyezzük, hogy a szántó művelési ágba sorolt terület országosan és a megyékben is folyamatosan csökkent, részben az erdősítésbe vont területek növekedése, részben pedig a nem művelt (korábban: művelésből kivont) területek növekedése miatt.

Az összesítő táblázatok alapján a következők állapíthatók meg (11. táblázat):

- A nyúlállomány és a búza területének aránya között gyenge (-0.2 < r < +0.3) korrelációk mutathatók ki, amik alapján a búza, mint élőhely alkotó kultúra fontosságára nem lehet következtetni.
- A nyúlállomány és a kukorica területének aránya között gyenge-közepes (-0.65 < r < +0.3) korrelációk mutathatók ki. A nagyüzemi mezőgazdasági termelés egyik legjelentősebb technológiai változást (gépesítés, kemizálás és táblaméretek diverzitás csökkentő hatásai) mutató növénye a kukorica volt, ezért ennek esetében a negatív előjelek megjelenése a várt hatást tükrözi. Ugyanakkor a kukorica és a búza, mint a két legfontosabb kultúra egymással interakcióban is van a közöttük lévő vetésváltások miatt.
- A nyúlállomány és a napraforgó területének aránya között három megyében közepes (-0.65 körüli) korrelációk mutathatók ki (Csongrád kivétel). Ez mindenféleppen összhangban van a napraforgó termeléstechnológiai sajátosságaival (gépesítés, kemizálás és táblaméretek diverzitás csökkentő hatásai). Ezek a jellemzők a napraforgó táblákat mint élőhelyalkotókat az apróvad szempontjából tökéletesek, ráadásul bizonyítható, hogy a napraforgó a mezei nyúl számára táplálkozási szempontból értéktelen.
- A nyúlállomány és az árpa területének aránya között gyenge és közepes (-0.1 < r <
+0.6 körüli) korrelációk mutathatók ki. Az árpa termesztése az elmúlt évtizedekben jelentősen visszaszorult a búza, a kukorica, napraforgó és olajnövények javára, ezáltal az élőhely változatosságához való hozzájárulása is csökkent. Véleményünk szerint az árpa vetésterületének aránya és a nyúlállomány közötti pozitív kapcsolatok visszaigazolják ennek a növénynek az apróvad és a mezei nyúl szempontjából betöltött szerepét.

- A nyúlállomány és a burgonya területének aránya között pozitív, továbbá közepes és erős (+0.2 < r < +0.8 körüli) korrelációk mutathatók ki. A burgonya a klasszikus kapásnövények közé tartozott, melynek technológiája jelentősen eltér a kalászos gabonáktól és a kukoricától is. A burgonya e sajátosságai folytán a mezei nyúl és más fajok szempontjából is kedvező környezeti feltételeket nyújthatott, részben azoktól eltérő gyomvilágával, részben pedig a térbeli diverzitást növelő hatásával. A burgonya jelentőségének csökkenése tehát közvetetten, de logikus kapcsolatba hozható a mezei nyúl állomány csökkenésével.

- A nyúlállomány és a cukorrépa területének aránya között pozitív, továbbá közepes és erős (+0.0 < r < +0.8 körüli) korrelációk mutathatók ki. Ezek az értékek közelítőleg a burgonya vetésterületéhez hasonlóak és azáltal megegyező termelési folyamatok állnak a háttérben is. A cukorrépa mezőgazdasági jelentősége a hazai cukoripar megszűnésével állnak kapcsolatban. A cukorrépa a mezei nyúl és más fajok szempontjából is kedvező környezeti feltételeket nyújtott, részben azoktól eltérő gyom- és rovarvilágával, részben pedig a térbeli diverzitást növelő hatásával. Gazdasági jelentőségének megszűnése tehát közvetetten, de logikus kapcsolatba hozható a mezei nyúl állomány csökkenésével.

- A nyúlállomány és a szántó művelési ágba sorolt terület aránya között pozitív és közepes, szignifikáns (+0.3 < r < +0.6 körüli) korrelációk mutathatók ki. A szántóterület csökkenése és a nyúlállomány egyidejű csökkenése hozza létre ezt a kapcsolatot. A szántó csökkenése a mezei nyúl élőhelyének általános csökkenését jelzi, aminek lényegi elemét a fent bemutatott, a fő termesztett növények vetésterületeiben és művelési technológiákban bekövetkezett változások alkotják.

- A nyúlállomány és a gyeıp (+legelő) művelési ágba sorolt terület aránya között pozitív és gyenge-közepes (-0.0 < r < +0.4) korrelációk mutathatók ki. Ezek mindegyik megyében elmaradnak a szántó értékeivel, ami összhangban állhat azzal, hogy a gyepterületek lényegesen kisebb, szintén csökkenő területet foglalnak el, illetve hogy
szerepük a nyúl élőhelyén belül kisebb jelentőségű.

- A nyúlállomány és a mezőgazdasági területekbe sorolt terület aránya között pozitív és gyenge-közepes (+0.1 < r < +0.7) korrelációk mutathatók ki. Ez a kategória valamennyi mezőgazdasági jellegű területet (szántó, gyep, kert, gyümölcsös) változását összegzi, a pozitív korrelációk az ezekben bekövetkezett fogyást tükrözik.

- A nyúlállomány és az erdő művelési ágba sorolt terület aránya között 3 megyében gyenge-közepes negatív (-0.4 < r < -0.1) korrelációk mutathatók ki. Az erdőterületek növekedése egyrészt csökkentette a mezei nyúl élőhelyét, másrészt pedig bővitette a nagyvad megtelepedésére, majd rohamos növekedéséhez szükséges élőhelyeket. Ezért a negatív korrelációk összhangban állnak a tapasztalati várákozással. Azt azért meg kell jegyezni, hogy nem önmagában az erdősítsés, hanem az emiatt bekövetkező "nagyvadasodás” és a vadgazdálkodók érdeklődésének a nagyvad irányába való áthelyeződése a változások érdemben ható tényezői.

- A nyúlállomány és nem művelt terület aránya között negatív közepes (-0.69 < r < +0.0) korrelációk mutathatók ki. Ez alól kivétel Csongrád megye, a másik 3 megye azonban egyértelmű kapcsolatot mutat. A művelésből kivont területek részben a települések terjeszkedése, iparosítás, valamint az úthálózat bővülése miatt növekedtek az utóbbi évtizedekben. Ezek a területek a vad élettereként és a vadgazdálkodás számára is – szinte kivétel nélkül – elvesznek. Ezért a három megyében talált negatív korrelációk a folyamat jó indikátorai, amiknek valós ökológiai tartalmat is tulajdoníthatunk.

11. táblázat. A mezei nyúl hasznosítás és a termesztett növények termésátlaga közötti korrelációk.
A legfontosabb mezőgazdasági növények átlagos terméseredményei és a nyúlállomány között az előbbiekhez hasonló korrelációk nem mutathatók ki. Ennek valószínűleg számos oka van, mint pl. hogy a terméseredmények értékei egyszerre tükrözik a természeti adottságok, a termelési technológia és az időjárás hosszú és rövid távú hatásait. A terméseredmények ezért egy-egy évre vonatkozóan ezeknek a hatásoknak az indikátorai, amiket általában nem lehet szétválasztani.

- A nyúlállomány és a búza termésének átlaga között pozitív és negatív, gyenge (-0.2 < r < +0.4) korrelációk mutathatók ki. A gyenje korrelációk nem jeleznek érdemben tárgyalható kapcsolatot.
- A nyúlállomány és a kukorica termésének átlaga között negatív vagy nulla körüli, gyenge (-0.3 < r < +0.0) korrelációk mutathatók ki. Ezek valamelyes a kedvezőtlenebb irányba való elmozdulást mutatnak, de nem szignifikánsak. A gyenge korrelációk nem jeleznek érdemben értékelhető kapcsolatot.
- A nyúlállomány és a napraforgó termésének átlaga között negatív és nulla körüli, gyenge (-0.4 < r < +0.0) korrelációk mutathatók ki. A gyenge korrelációk nem jeleznek érdemben tárgyalható kapcsolatot, ez alól egyedül Hajdú-Bihar megye értéke kivétel, amely szignifikáns.
- A nyúlállomány és az árpa termésének átlaga között pozitív és gyengén negatív, gyenge (-0.1 < r < +0.3) korrelációk mutathatók ki. A gyenge negatív korrelációk nem jeleznek érdemben tárgyalható kapcsolatot.
- A nyúlállomány és a burgonya termésének átlaga között negatív, gyenge (0.5 < r < -0.1) korrelációk mutathatók ki. A gyenge negatív korrelációk legfeljebb jelzésértékűek.
- A nyúlállomány és a cukorrépa termésének átlaga között negatív, gyenge (-0.3 < r < -0.0) korrelációk mutathatók ki. A gyenge negatív előjelű kapcsolatok azt jelezhetik, hogy azok az évek, amik a burgonya és a cukorrépa szempontjából kedvezőek, a mezei nyúl számára kedvezőtlenek.

4.1.2.5. A mezei nyúl gazdálkodási és az időjárási jellemzők közötti korrelációk

Az apróvadállomány éves változásai/ingadozásai és az időjárási jellemzők rövid és hosszú távú hatásai közötti kapcsolatokat rendszeresen jelölik meg olyan tényezőkként, amik
kedvezőtlenül hatnak a vadászható fajok állományaira is. Ezeknek a ténylegőknek a hatásaira vonatkozóan azonban nagyon ellentmondásos, esetenként következetlen eredményekkel lehet találkozni. Ennek okai a következők:

- A meteorológiai adatok biológiai megfelelhetősége kérdéses, mert az egyedi értékek vagy az ezekből képzett mutatók és a populációk rájuk adott válaszai ismeretlen mértékben és módon kapcsolódnak. Az egyes időszakokban elszenvedett kedvezőtlen hatások a későbbiekben leegyszerűsíthetőek, de fel is erősödhetnek, azaz a tényleges hatás/kapcsolat mérése bizonytalanná vagy lehetetlenné válik.

- A szélsőséges időjárási események (jelentős fagy, árvíz vagy aszály) esetenként látványosan összekapcsolhatóak populációs jelenségekkel. De ezek legtöbbször nem mért eredményeken alapulnak, hanem vélekedések, amik mögött statisztikai vagy tudományos megerősítés nem áll.

- Az előbbi katasztrofális értékek nem egy folyamatos változási sorba illeszkednek, hanem kiugró értékek, amiket ennek megfelelően lehet jelezni, de semmiképpen sem kezelhetők a szabályos kapcsolatrendszerbe illeszthető megfigyeléseként.

Az előbbieket is figyelembe véve az időjárási ténylegők hatásainak korreláció-vizsgálatát a szakmai körökben meghatározó tényezőkre korlátoztuk. A következő mutatók tavaszi (március-május) és nyári (június-augusztus) átlagos, illetve kumulált értékeit elemeztük: tavaszi átlagos hőmérséklet, nyári átlagos hőmérséklet, tavaszi átlagos maximum hőmérséklet, nyári átlagos maximum, hőmérséklet, tavaszi abszolút maximum hőmérséklet, nyári abszolút maximum, hőmérséklet, tavaszi átlagos minimum hőmérséklet, nyári átlagos minimum hőmérséklet, tavaszi abszolút minimum hőmérséklet, nyári abszolút minimum hőmérséklet, tavaszi hőségnapok száma, nyári hőségnapok száma, tavaszi fagyos napok száma.

A korrelációs mátrixok első sorában zöld tónusozással kiemeltük a mezei nyúl hasznosítás és az értékelt időjárási paraméterek közötti korrelációkat (12-15. táblázat). A korrelációs mátrixok alapján a következők állapíthatóak meg:

- A hőmérsékleti jellemzők esetében a kapcsolatok nem szignifikánsak, azok legfeljebb gyenge erősségű, de nem szignifikáns értékek. Néhány esetben az előjel megerősíti a várt kapcsolatot, de ezeket legfeljebb tájékoztató jellegű információknak szabad tekinteni (pl. nyári átlagos maximum hőmérséklet, tavaszi fagyos napok száma, nyári átlagos maximum hőmérséklet), amik a megyék között sem következetesen jelennek meg.
A csapadék jellemzők vonatkozásában a kapcsolatok szintén nem szignifikánsak és igen gyenge kapcsolatokat mutatnak. Ezek között lényegében egyik sem erősíti meg az átlagot meghaladóan csapadékos tavaszok vagy nyarok kedvezőtlen hatásait. Érdekességként meg lehet említeni, hogy a tavaszi és a nyári szeles napok száma is szignifikáns negatív kapcsolatot jelez a nyúlhasznosítással.

<table>
<thead>
<tr>
<th></th>
<th>Mezei nyúl hasznosítás (db/100ha)</th>
<th>Tavasz csapadek (mm)</th>
<th>Nyári csapadek (mm)</th>
<th>Tavasz csapadékos nap</th>
<th>Nyári csapadékos nap</th>
<th>Nyári napfényes orák száma</th>
<th>Nyári napfényes napok száma</th>
<th>Tavasz széles napok száma</th>
<th>Nyári széles napok száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>Sig. (2-tailed)</td>
<td>N</td>
<td>Pearson Correlation</td>
<td>Sig. (2-tailed)</td>
<td>N</td>
<td>Pearson Correlation</td>
<td>Sig. (2-tailed)</td>
<td>N</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td>Mezei nyúl hasznosítás</td>
<td>1</td>
<td>0.056</td>
<td>-0.097</td>
<td>0.174</td>
<td>-0.247</td>
<td>-0.360</td>
<td>0.182</td>
<td>0.445</td>
<td>.050</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.791</td>
<td>0.696</td>
<td>0.405</td>
<td>0.294</td>
<td>0.077</td>
<td>0.442</td>
<td>0.026</td>
<td>0.052</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>51</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Tavasz csapadek (mm)</td>
<td>0.056</td>
<td>1</td>
<td>0.103</td>
<td>.777</td>
<td>0.226</td>
<td>-0.723</td>
<td>.098</td>
<td>-0.022</td>
<td>0.202</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.791</td>
<td>0.665</td>
<td>0.000</td>
<td>0.338</td>
<td>0.000</td>
<td>0.681</td>
<td>0.916</td>
<td>0.394</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Nyári csapadek (mm)</td>
<td>-0.057</td>
<td>0.103</td>
<td>1</td>
<td>0.195</td>
<td>.311</td>
<td>-0.056</td>
<td>-0.664</td>
<td>.001</td>
<td>0.038</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.686</td>
<td>0.665</td>
<td>0.411</td>
<td>0.000</td>
<td>0.816</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tavasz csapadékos nap</td>
<td>0.174</td>
<td>0.777</td>
<td>.196</td>
<td>1</td>
<td>0.390</td>
<td>-0.745</td>
<td>.015</td>
<td>-0.156</td>
<td>0.003</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.405</td>
<td>0.000</td>
<td>0.411</td>
<td>0.089</td>
<td>0.000</td>
<td>0.292</td>
<td>0.456</td>
<td>0.990</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Nyári csapadékos nap</td>
<td>-0.247</td>
<td>0.226</td>
<td>.811</td>
<td>0.390</td>
<td>1</td>
<td>-0.158</td>
<td>-0.793</td>
<td>.001</td>
<td>-0.532</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.294</td>
<td>0.338</td>
<td>0.000</td>
<td>0.089</td>
<td>0.000</td>
<td>0.505</td>
<td>0.000</td>
<td>0.007</td>
<td>20</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tavasz napfényes orák száma</td>
<td>-0.360</td>
<td>-0.723</td>
<td>.056</td>
<td>-0.745</td>
<td>-0.158</td>
<td>1</td>
<td>0.251</td>
<td>-0.108</td>
<td>-0.223</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.077</td>
<td>0.000</td>
<td>0.816</td>
<td>0.000</td>
<td>0.505</td>
<td>0.000</td>
<td>0.286</td>
<td>0.609</td>
<td>0.345</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Nyári napfényes orák száma</td>
<td>0.162</td>
<td>-0.098</td>
<td>-0.684</td>
<td>.248</td>
<td>-0.793</td>
<td>0.251</td>
<td>0.393</td>
<td>0.521</td>
<td>0.016</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.442</td>
<td>0.681</td>
<td>0.001</td>
<td>0.292</td>
<td>0.000</td>
<td>0.286</td>
<td>0.086</td>
<td>0.016</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tavasz széles napok száma</td>
<td>.445</td>
<td>-0.022</td>
<td>-0.505</td>
<td>-0.156</td>
<td>-0.532</td>
<td>-0.108</td>
<td>0.353</td>
<td>1</td>
<td>0.749</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.026</td>
<td>0.916</td>
<td>0.023</td>
<td>0.456</td>
<td>0.016</td>
<td>0.609</td>
<td>0.086</td>
<td>0.000</td>
<td>20</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Nyári széles napok száma</td>
<td>.440</td>
<td>0.202</td>
<td>-0.467</td>
<td>0.003</td>
<td>-0.533</td>
<td>-0.233</td>
<td>0.521</td>
<td>1</td>
<td>0.749</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.052</td>
<td>0.394</td>
<td>0.038</td>
<td>0.990</td>
<td>0.007</td>
<td>0.345</td>
<td>0.016</td>
<td>0.000</td>
<td>20</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
A nyúlhasznostás korrelációi a tavaszi és nyári időjárási jellemzőkkel Csongrád megye

<table>
<thead>
<tr>
<th></th>
<th>Mezei nyúl hasznostás (db/100ha)</th>
<th>Tavaszi csapadék (mm)</th>
<th>Nyári csapadék (mm)</th>
<th>Tavaszi csapadékos nap</th>
<th>Nyári csapadékos nap</th>
<th>Nyári napfényes órák száma</th>
<th>Nyári napfényes órák száma</th>
<th>Tavaszi szeles napok száma</th>
<th>Nyári szeles napok száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1.000 (**)</td>
<td>-0.136 (**)</td>
<td>-0.386 (**)</td>
<td>0.200 (**)</td>
<td>0.175 (**)</td>
<td>0.316 (**)</td>
<td>0.303 (**)</td>
<td>0.194 (**)</td>
<td>0.172 (**)</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mezei nyúl hasznosítás (db/100ha)</th>
<th>Pearson Correlation</th>
<th>Tavaszi csapadék (mm)</th>
<th>Nyári csapadék (mm)</th>
<th>Tavaszi csapadékos nap</th>
<th>Nyári csapadékos nap</th>
<th>Tavaszi napfényes órak száma</th>
<th>Nyári napfényes órak száma</th>
<th>Tavaszi szeles napok száma</th>
<th>Nyári szeles napok száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1</td>
<td>0.076</td>
<td>0.269</td>
<td>0.330</td>
<td>0.209</td>
<td>-0.427</td>
<td>-0.175</td>
<td>-0.627(*)</td>
<td>-0.668(*)</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.076</td>
<td>1</td>
<td>0.269</td>
<td>0.330</td>
<td>0.209</td>
<td>-0.427</td>
<td>-0.175</td>
<td>-0.627(*)</td>
<td>-0.668(*)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.269</td>
<td>0.269</td>
<td>1</td>
<td>0.026</td>
<td>0.434</td>
<td>-0.055</td>
<td>-0.447(*)</td>
<td>0.434</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.330</td>
<td>0.678(**)</td>
<td>0.026</td>
<td>1</td>
<td>0.153</td>
<td>-0.742(**)</td>
<td>-0.196</td>
<td>-0.023</td>
<td>-0.157</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.209</td>
<td>0.332</td>
<td>0.434</td>
<td>0.153</td>
<td>1</td>
<td>-0.250</td>
<td>-0.812(**)</td>
<td>-0.323</td>
<td>-0.368</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.376</td>
<td>0.153</td>
<td>0.056</td>
<td>0.519</td>
<td>0.287</td>
<td>0.000</td>
<td>0.191</td>
<td>0.146</td>
<td>0.146</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.061</td>
<td>0.004</td>
<td>0.819</td>
<td>0.000</td>
<td>0.287</td>
<td>0.000</td>
<td>0.392</td>
<td>0.145</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-0.427</td>
<td>-0.620(**)</td>
<td>-0.055</td>
<td>-0.742(**)</td>
<td>-0.250</td>
<td>1</td>
<td>0.202</td>
<td>0.357</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.061</td>
<td>0.004</td>
<td>0.819</td>
<td>0.000</td>
<td>0.287</td>
<td>0.000</td>
<td>0.392</td>
<td>0.145</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-0.175</td>
<td>-0.208</td>
<td>-0.447(*)</td>
<td>-0.196</td>
<td>-0.812(**)</td>
<td>0.202</td>
<td>1</td>
<td>0.291</td>
<td>0.487(*)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-0.460</td>
<td>0.379</td>
<td>0.048</td>
<td>0.409</td>
<td>0.392</td>
<td>0.242</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-0.627(*)</td>
<td>0.011</td>
<td>0.434</td>
<td>-0.023</td>
<td>-0.323</td>
<td>0.357</td>
<td>-0.291</td>
<td>1</td>
<td>0.706(**)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.002</td>
<td>0.964</td>
<td>0.072</td>
<td>0.926</td>
<td>0.191</td>
<td>0.014</td>
<td>0.242</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-0.685(*)</td>
<td>-0.134</td>
<td>0.056</td>
<td>-0.157</td>
<td>-0.368</td>
<td>0.474</td>
<td>-0.487(*)</td>
<td>0.706(*)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

**. p < 0.01 szinten szignifikáns korreláció.
*. p < 0.05 szinten szignifikáns korreláció.
4.1.3. Következtetések

Az értékelt négy apróvadas megye vadgazdálkodási, földhasználati és időjárási adatai alapján a következő megállapítások tehetők.

- A négy megegyüzleti állomány- és hasznosítási adatai is nagyon hasonló mintázatot követnek, az alapvető változások viszonylag kis eltéréseket mutatnak.

- A megegyüzleti állomány szempontjából kedvezőtlen hatásúnak tartott vadfajok terítése és/vagy jelentett állományainak alakulása látványosan hasonló tendenciákat mutat. Ez különböző mértékben azonos vadgazdálkodási változásokra (vaddisznó terjedése, vadászható káros fajok kezelése) utal. Ezek a változások a négy megegyüzleti változásokra (közvetve az apróvad) visszaszorulására vagy a vele való gazdálkodás romlására utal. A nyúlállományra gyakorolt tényleges hatásuk azonban ezektől az összefüggésekkből nem vezethető le egyértelműen. Hasonlóképpen a táplálék-összetétel vizsgálatok sem jelzik a ragadozók populációszabályozásának erősségét. Ezt csak a ragadozók készleti vizsgálatokkal lehet bizonyítani.

- A négy megegyüzleti adatainak összefüggés-vizsgálata nagyon hasonló kapcsolatot mutatott ki. Ezek közül ki kell emelni a jelentett létszám és az előző évi nyúlállomány kapcsolatát. Ez jelzi, hogy a vadgazdálkodók a következő évnyi nyitó létszámot az előző év eredménye alapján vélelmezik. Ezért, valamint a tervezési rendszer hibái miatt ezt a mutatót a gyakorlatban nem szabad használni.

- Az elmúlt félévszázadban az ország területén a földhasználati jellemzőkben, a mezőgazdasági termelés területi és technológiai jellemzőiben alapvető változások mentek végbe. A nyúlállomány és a búza, kukorica és a napraforgó területének aránya között gyenge gyenge és erősödő közepes (-0.1 < r < +0.6 körüli) korrelációk mutathatók ki. Ezek összhangban vannak e kultúrák területi jelentőségeivel és a termeléstechnológiájukhoz köthető, vélhető hatásokkal.

- A nyúlállomány és az árpa, burgonya és cukorrépa területének aránya között gyenge és erősödő közepes (-0.1 < r < +0.6 körüli) korrelációk mutathatók ki. A kultúrák esetében feltételezhető, hogy a korrelációkat területfoglalásuk csökkenése és a termesztett kultúrák diverzitásának csökkenésére gyakorolt hatásuk együtt határozta meg. Elképzelhető az is, hogy e kultúrák esetében a változások kevésbé erősek, mint a búza, kukorica és a napraforgó esetében, és/vagy a termesztési technológiájuk kedvezőbb a nyúl szempontjából. Ezek azonban ezen a szinten nem értékelhetők a
A nyúlállomány és a szántó, a gyep művelési ágba és az együttesen mezőgazdasági területbe sorolt területek aránya között pozitív és gyenge közepes korrelációk mutathatók ki. A szántóterület csökkenése és a nyúlállomány egyidejű csökkenése hozza létre ezt a kapcsolatot.

A nyúlállomány és az erdő művelési ágba sorolt terület aránya között geyenge-közepes negatív korrelációk mutathatók ki, ami összhangban van azzal, hogy az erdőterületek növekedése egyrészts csökkentette a meze nyúl élőhelyét, másrészt pedig bővítette a nagyvad megtelepedésére, majd rohamos növekedéséhez szükséges élőhelyeket.

A nyúlállomány és nem művelt terület aránya között pozitív közepes korrelációk mutathatók ki. A művelésből kívont területek a vad élettéreként és a vadgazdálkodás számára is – szinte kivétel nélkül – elvesznek. Ezért a három megyében talált negatív korrelációk a folyamat jó indikátora, amiknek valós ökológiai tartalmat is tulajdoníthatunk.

A legfontosabb mezőgazdasági növények átlagos terméseredményei és a nyúlállomány között az előbbiekhez hasonló korrelációk nem mutathatók ki. Ennek valószínűleg számos oka van, mint pl. hogy a terméseredmények értékei egyszerre tükrözik a természeti adottságok, a termelési technológia és az időjárás hosszú és rövid távú hatásait. A termésedemények ezért egy-egy évre vonatkozóan ezeknek a hatásoknak az indikátora, amiket általában nem lehet szétválasztani. Ezeknek a hatásoknak tulajdonítjuk, hogy a korrelációk általában gyengék, nem szignifikánsak és inkább csak a várt trendek megerősítésére alkalmasak.

Az apróvadállomány változásai/ingadozásai és az időjárási jellemzők rövid és hosszú távú hatásai közötti kapcsolatok rendszeresen jelölík meg olyan tényezőként, amik kedvezőtlenül hatnak a vadászható fajok állományaira is. Ezeknek a tényezőknek a hatásairá vonatkozóan nagyon ellentmondásos, esetenként következetlen eredményekkel lehet találkozni. A látványos események (jelentős fagy, árvíz vagy aszály) megfigyelése esetenként jól összekapcsolhatók populációs jelenségekkel. A katastrofális értékek azonban nem egy folyamatos változási sorba illeszkednek, hanem kiugró értékek, amiket ennek megfelelően, és nem a szabályos kapcsolatrendszerbe illeszthető megfigyelések két kezelni.

Az értékelhőmérsékleti jellemzők esetében a kapcsolatok nem szignifikánsak, azok legfeljebb gyenget erősségű, de nem szignifikáns értékek. Néhány esetben az előjel

rendelkezésre álló adatok alapján.

- A nyúlállomány és a szántó, a gyep művelési ágba és az együttesen mezőgazdasági területbe sorolt területek aránya között pozitív és gyenge közepes korrelációk mutathatók ki. A szántóterület csökkenése és a nyúlállomány egyidejű csökkenése hozza létre ezt a kapcsolatot.

- A nyúlállomány és az erdő művelési ágba sorolt terület aránya között gyenge-közepes negatív korrelációk mutathatók ki, ami összhangban van azzal, hogy az erdőterületek növekedése egyrészts csökkentette a meze nyúl élőhelyét, másrészt pedig bővítette a nagyvad megtelepedésére, majd rohamos növekedéséhez szükséges élőhelyeket.

- A nyúlállomány és nem művelt terület aránya között pozitív közepes korrelációk mutathatók ki. A művelésből kívont területek a vad élettéreként és a vadgazdálkodás számára is – szinte kivétel nélkül – elvesznek. Ezért a három megyében talált negatív korrelációk a folyamat jó indikátora, amiknek valós ökológiai tartalmat is tulajdoníthatunk.

- A legfontosabb mezőgazdasági növények átlagos terméseredményei és a nyúlállomány között az előbbiekhez hasonló korrelációk nem mutathatók ki. Ennek valószínűleg számos oka van, mint pl. hogy a terméseredmények értékei egyszerre tükrözik a természeti adottságok, a termelési technológia és az időjárás hosszú és rövid távú hatásait. A termésedemények ezért egy-egy évre vonatkozóan ezeknek a hatásoknak az indikátora, amiket általában nem lehet szétválasztani. Ezeknek a hatásoknak tulajdonítjuk, hogy a korrelációk általában gyengék, nem szignifikánsak és inkább csak a várt trendek megerősítésére alkalmasak.

- Az apróvadállomány változásai/ingadozásai és az időjárási jellemzők rövid és hosszú távú hatásai közötti kapcsolatok rendszeresen jelölík meg olyan tényezőként, amik kedvezőtlenül hatnak a vadászható fajok állományaira is. Ezeknek a tényezőknek a hatásaira vonatkozóan nagyon ellentmondásos, esetenként következetlen eredményekkel lehet találkozni. A látványos események (jelentős fagy, árvíz vagy aszály) megfigyelése esetenként jól összekapcsolhatók populációs jelenségekkel. A katastrofális értékek azonban nem egy folyamatos változási sorba illeszkednek, hanem kiugró értékek, amiket ennek megfelelően, és nem a szabályos kapcsolatrendszerbe illeszthető megfigyelések két kezelni.

- Az értékelhőmérsékleti jellemzők esetében a kapcsolatok nem szignifikánsak, azok legfeljebb gyenget erősségű, de nem szignifikáns értékek. Néhány esetben az előjel
megerősíti a várth kapcsolatot, de ezeket legfeljebb tájékoztató jellegű információknak szabad tekinteni (pl. nyári átlagos maximum hőmérséklet, tavaszi fagyos napok száma, nyári átlagos maximum hőmérséklet), amik a megyék között sem következetesen jelennek meg. A csapadék jellemzők vonatkozásában a kapcsolatok szintén nem szignifikánsak és igen gyenge kapcsolatokat mutatnak. Ezek között lényegében egyik sem erősíti meg az átlagot meghaladóan csapadékos tavaszok vagy nyarak kedvezőtlen hatásait.
4.2. A fácánállomány hasznosításának vizsgálata a négy legfontosabb apróvadas megye adatai alapján

4.2.1. Az elemzések köre és az adatok forrásai

Jelen értékeléshez Békés, Csongrád, Hajdú-Bihar és Jász-Nagykun-Szolnok megye vadgazdálkodási adatait használtuk fel. Az adatok köre a következő volt:

i) Az értékelésben egyrészt bemutatjuk a 4 megye vadállomány és teríték (hasznosítási) adatainak változását, azok egymáshoz való hasonlóságát, másrészt korreláció-elemzést végezünk az értékel t jellemzők között.

ii) Az értékelés változók:

(1) Fácángazdálkodás:i adatok fácán tavaszi jelentett létszám ("becslés"), kibocsátás hasznosítás (t), hasznosítás (t-1).

(2) Fácán és egyes vadfajok korrelációi: Vaddisznóbecslés, vaddisznóteríték, dolmányos varjú (teríték), borz (teríték), róka (teríték), kóbór kutya (teríték), kóbór macska (teríték).

Az adatok forrásai az Országos Vadgazdálkodási Adattár (OVA) adatai.

A grafikonok készítéséhez Libre Office Calc (v4.0) táblázatkezelőt, a korreláció-számításhoz SPSS (v14) statisztikai programcsomagot használtunk.

4.2.2. Az eredmények bemutatása és értékelése

4.2.2.1. A fácán és a kiemelt fajok változásai az 1994-2012. közötti időszakban

Az értékelésnek ehhez a részéhez azért az 1994-2012. közötti adatokat használtuk, mert lényegében az időszak első 3-5 évében alakultak ki a vadgazdálkodás mai feltételei és a kezdeti és a végpont közötti tendenciák így egységes feltételek (jogi keretek, mezőgazdasági és politikai környezet) közötti változásokat mutathatnak. A változásokat ábránként értékelve a következők mondhatók:

4.2.2.2. A fácán gazdálkodási adatok változása 1994-2012. közötti időszakban

A négy értékelő megye adatait először 4-4 diagramon mutatjuk be, majd a következő fejezetben a számszerű összefüggéseket is ismertetjük.

34. ábra. A fácán kibocsátás változása a négy megyében 1994-2012.

- Békés megye fácángazdálkodása (36. ábra)
 - A jelentett létszám (becslés), a befogás és a lelövések változásai (bal felső ábra): A fácán állomány jelentős ingadozások mellett, enyhe csökkenő trendet mutat. A hasznosítás a jelentett állományhoz hasonlóan ingadozva változott, ennek trendvonala kicsit meredekebb.
 - Az éves kibocsátások és a lelövések pontjai között jól látható a kapcsolat, még ha a pontok erősen szóródnak is (jobb felső ábra). A kapcsolat pozitív, ami azt jelezheti, hogy a hasznosítás függhet a kibocsátástól.
 - A legerősebb kapcsolat a tavaszi jelentett létszám és az előző évi hasznosítás között látható (bal alsó ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslesnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
 - Az adott évi jelentett létszám és az adott évi hasznosítás között nincs kapcsolat (jobb alsó ábra). Ennek oka lehet, hogy a vadgazdálkodási egységek a fácán létszámát az adott év február 15-ig jelentik, a hasznosítás pedig októbertől kezdődik. A hasznosítható létszám a fácán esetében alapvetően nem a tél végi, hanem az ettől az időponttól a vadászidényig terjedő időszak eseményeinek függvénye.
• Csongrád megye fácángazdálkodása (37. ábra)
 ◦ Az éves kibocsátások és a lelövések pontjai között jól látható a kapcsolat, még ha a pontok ebben a megyében erősebben is szóródnak is (jobb felső ábra). A kapcsolat pozitív, ami azt jelezheti, hogy a hasznosítás függhet a kibocsátástól (vagy a nagyobb kibocsátás nagyobb hasznosításra ösztönöz).
 ◦ Csongrád megyében is a legerősebb kapcsolat a tavaszi jelentett létszám és az előző évi hasznosítás között látható (bal alsó ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen subjektív indexe nem valós mérőszáma az állománynak.
 ◦ Az adott évi jelentett létszám és az adott évi hasznosítás között nagyon gyenge negatív összefüggés látszik (jobb alsó ábra). Ennek oka lehet, hogy a vadgazdálkodási egységek a fácán létszámát az adott év február 15-ig jelentik, a hasznosítás pedig októbertől kezdődik. A hasznosítható létszám a fácán esetében alapvetően nem a tél végi, hanem az ettől az időponttól a vadászidényig terjedő időszak eseményeinek függvénye.
• Hajdú-Bihar megye fácángazdálkodása (38. ábra)
 ◦ A jelentett létszám (becslés), a befogás és a lelővések változásai (bal felső ábra): A fácán jelentett állománya jelentős ingadozások mellett, határozott csökkenő trendet mutat (70 → 50 ezer). A hasznosítás a jelentett állománnyal párhuzamosan változott. A kibocsátás mintegy negyedére-harmadára csökkent.
 ◦ Az éves kibocsátások és a lelővések pontjai között jól látható a kapcsolat, de a pontok itt is erősen szóródnak is (jobb felső ábra). A kapcsolat pozitív, ami azt jelezheti, hogy a hasznosítás függhet a kibocsátástól.
 ◦ A legerősebb kapcsolat a tavaszi jelentett létszám és az előző évi hasznosítás között látható (bal alsó ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
 ◦ Az adott évi jelentett létszám és az adott évi hasznosítás között gyenge, pozitív a kapcsolat (jobb alsó ábra). Ennek oka lehet, hogy a vadgazdálkodási egységek a fácán létszámát az adott év február 15-ig jelentik, a hasznosítás pedig októbertől kezdődik. A hasznosítható létszám a fácán esetében alapvetően nem a tél végi, hanem az ettől az időponttól a vadászidényig terjedő időszak eseményeinek függvénye.
• Jász-Nagykun-Szolnok megye fácángazdálkodása (39. ábra)
 ◦ A jelentett létszám (becslés), a befogás és a lelövések változásai (bal felső ábra): A jelentett fácánállomány ingadozások ellenére, nem mutat csökkenő trendet. A hasznosítás a jelentett állományhoz hasonlóan ingadozva változott, ennek trendvonala csökkenő irányú folyamatot jelez. A kibocsátás itt is a kb. negyedére csökkent a kezdeti értéknek.
 ◦ Az éves kibocsátások és a lelövések pontjai között jól láthatóan szoros a kapcsolat, még ha a pontok erősen szóródnak is (jobb felső ábra). A kapcsolat pozitív, ami azt jelezheti, hogy a hasznosítás függhet a kibocsátástól.
 ◦ A legerősebb kapcsolat a tavaszi jelentett létszám és az előző évi hasznosítás között látható (bal alsó ábra). Ez a szoros kapcsolat azt jelzi, hogy a tavaszi becslésnek nevezett létszám (ami a tervezés alapjául szolgál) valójában az előző évi vadászati és befogási siker alapján alakulhat ki, vagyis valamilyen szubjektív indexe nem valós mérőszáma az állománynak.
 ◦ Az adott évi jelentett létszám és az adott évi hasznosítás között lényegében nincs kapcsolat (jobb alsó ábra). Ennek oka lehet, hogy a vadgazdálkodási egységek a fácán létszámát az adott év február 15-ig jelentik, a hasznosítás pedig októbertől kezdődik.
4.2.2.3. A fácán gazdálkodási adatok közötti korrelációk az 1994-2012. közötti időszak adatai alapján

A négy megyei összefoglaló táblázat a jelentett létszám és a befogás, a lelövés, az adott évi hasznosítás, és az előző évi hasznosítás közötti korrelációkat, valamint a vaddisznó becslés, vaddisznó teríték, dolmányos varjú (teríték), borz (teríték), róka (teríték), kóbor kutya (teríték), kóbor macska (teríték) közötti korrelációs mátrixokat mutatja (16-19. táblázat). A korrelációs mátrixok értékei tekinthetők ok-okozati összefüggéseknek is, amikor az egyik tényező változása a másik alakulását befolyásolja (erős pozitív vagy negatív kapcsolat), de gyakran csak a tényezők együtt járásáról (egyidejű egyirányú vagy ellentétes) mozdúsáról van szó. Az erős korreláció sem feltétenül ok-okozati kapcsolatra utal és a korreláció hiánya utalhat arra, hogy a várt ok-okozati összefüggést más tényezők eltorzítják és ezáltal a kapcsolat nem mutatható ki.

- A tavaszi jelentett létszám (becslés) és az előző évi hasznosítás között rendre igen szoros, szignifikáns kapcsolat mutatkozik (\(r>0.7\)). Ez azt jelentheti, hogy a jelentett létszám nagyságát 50-70%-ban az előző évi teríték nagysága (a vadászati siker mértéke) határozza meg. Ennek megfelelően a tavaszi jelentett létszámokkal talált kapcsolatok csak korlátozott értékűek.
- A fácán kibocsátás és az adott évi hasznosítás közötti kapcsolat közepes és erős (0.5 < \(r < 0.8\)) korrelációt mutat a négy megye idősorai alapján. Ennek egyik oka az, hogy a kibocsátás és a hasznosítás is csökkenő trendet mutatnak (együtt változnak). De ok-okozati kapcsolattal is lehet számolni, mivel a nagyobb kibocsátott mennyiség megtérülése érdekében több fácán is lőhettek, aminek azonban nem a nagyobb megtérülés volt az alapja. A fácán kibocsátás a négy megyében számos más jellemzővel mutat kapcsolatot, de ezekről megalapozott feltételezni, hogy egyik sem ok-okozati kapcsolat eredménye (vaddisznó és ragadozókkal mutatott korrelációk).
- Az adott évi hasznosítás és a többi faj korrelációi: Csongrád megye kivételével ezek a kapcsolatok közepes erősségűek és valószínűleg az együttváltozás eseteiként írhatók le. Ennek ellenére azonban a vaddisznóval és a borzzal talált kapcsolatok említésre érdemesek.
<table>
<thead>
<tr>
<th></th>
<th>Békés megye</th>
<th>Korrrelációs mátrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Falán becsülés</td>
<td>Falán hasznosítás (a)</td>
</tr>
<tr>
<td>Facén becsült</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.665</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.701</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>Falán befogás</td>
<td>r</td>
<td>794(**)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falán lelövés</td>
<td>r</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falán hasznosítás (a)</td>
<td>r</td>
<td>-0.596(**)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falán hasznosítás (b)</td>
<td>r</td>
<td>9.68(**)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td>Vaddiszpon becsült</td>
<td>r</td>
<td>0.695(**)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Vaddiszpon hasznosítás</td>
<td>r</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.046</td>
</tr>
<tr>
<td>Dolmanyos varju</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Róka</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Bitz</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Kóbor kutya</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Kóbor macska</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
</tbody>
</table>

** Szignifikancia p < 0.01 szint (2-oldal). * Szignifikancia p < 0.05 szint (2-oldal).**

16. táblázat. A jelentett létszám és a befogás, a lelövés, a lelövés, az adott évi hasznosítás, és az előző évi hasznosítás közötti, valamint a vaddiszpon becsülés, vaddiszpon teríték, dolmanyos varjú (teríték), borz (teríték), róka (teríték), kóbor kutya (teríték), kóbor macska (teríték) közötti korrrelációs mátrix Békés megye.
17. táblázat. A jelentett létszám és a befogás, a lelövés, az adott évi hasznosítás, és az előző évi hasznosítás közötti, valamint a vaddiszno becslés, vaddiszno teríték, dolmányos varjú (teríték), borz (teríték), róka (teríték), kóbortyka (teríték), kóbor macska (teríték) közötti korrelációs mátrix Csongrád megye.

<table>
<thead>
<tr>
<th></th>
<th>Fiacson becslés</th>
<th>Fiacson kiösszítés</th>
<th>Fiacson hasznosított (%)</th>
<th>Fiacson hasznosított (±1)</th>
<th>Vaddiszno becslés</th>
<th>Vaddiszno hasznosított (%)</th>
<th>Dományos varjú</th>
<th>Róka</th>
<th>Borz</th>
<th>Kóbóutya</th>
<th>Kóbor macska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiacson becslés</td>
<td>r</td>
<td>1</td>
<td>-0.119</td>
<td>-0.017</td>
<td>0.674**</td>
<td>-0.259</td>
<td>0.135</td>
<td>-0.086</td>
<td>0</td>
<td>0.259</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.410</td>
<td>0.628</td>
<td>0.080</td>
<td>0.21</td>
<td>0.534</td>
<td>0.581</td>
<td>0.746</td>
<td>0.828</td>
<td>0.286</td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Fiacson kiösszítés</td>
<td>r</td>
<td>1</td>
<td>-0.525**</td>
<td>0</td>
<td>-0.493*</td>
<td>0</td>
<td>-0.704**</td>
<td>0</td>
<td>0.824**</td>
<td>0.654**</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.021</td>
<td>0.057</td>
<td>0.001</td>
<td>0.047</td>
<td>0.158</td>
<td>0.000</td>
<td>0.904</td>
<td>0.003</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Fiacson hasznosított (%)</td>
<td>r</td>
<td>1</td>
<td>-0.374</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.082</td>
<td>0</td>
<td>0.494*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.770</td>
<td>0.173</td>
<td>0.355</td>
<td>0.122</td>
<td>0.223</td>
<td>0.810</td>
<td>0.095</td>
<td>0.031</td>
<td>0.031</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Fiacson hasznosított (±1)</td>
<td>r</td>
<td>1</td>
<td>0.061**</td>
<td>0.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.016</td>
<td>0.016</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.181</td>
<td>0.350</td>
<td>0.761</td>
<td>0.501</td>
<td>0.786</td>
<td>0.023</td>
<td>0.033</td>
<td>0.18</td>
<td>0.18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Vaddiszno becslés</td>
<td>r</td>
<td>1</td>
<td>0.864**</td>
<td>0.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.006</td>
<td>0.006</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0.731</td>
<td>0.061</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Vaddiszno hasznosított (%)</td>
<td>r</td>
<td>1</td>
<td>0.493</td>
<td>0.598**</td>
<td>0.529**</td>
<td>0.576**</td>
<td>-0.610**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.062</td>
<td>0.003</td>
<td>0.000</td>
<td>0.001</td>
<td>0.006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Dományos varjú</td>
<td>r</td>
<td>1</td>
<td>0.007**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.219</td>
<td>0.000</td>
<td>0.731</td>
<td>0.061</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Róka</td>
<td>r</td>
<td>1</td>
<td>0.281**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.026</td>
<td>0.007</td>
<td>0.160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Borz</td>
<td>r</td>
<td>1</td>
<td>-0.515</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.039</td>
<td>0.105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kóbó utya</td>
<td>r</td>
<td>1</td>
<td>0.625**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Kóbor macska</td>
<td>r</td>
<td>1</td>
<td>0.625**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
</tr>
</tbody>
</table>

** * Szignifikáns p < 0.01 szint (2-oldal); ** Szignifikáns p < 0.05 szint (2-oldal)
<table>
<thead>
<tr>
<th></th>
<th>Falun becslés</th>
<th>Falun hitcsofásk</th>
<th>Falun hasznosítás (%)</th>
<th>Rakoczi becslés</th>
<th>Rakoczi hitcsofásk</th>
<th>Rakoczi hasznosítás (%)</th>
<th>Vaddísző becslés</th>
<th>Vaddísző hitcsofásk</th>
<th>Vaddísző hasznosítás (%)</th>
<th>Dolmányos varjú</th>
<th>Róka</th>
<th>Borz</th>
<th>Kóbor kutyta</th>
<th>Kóbor macska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falun becslés</td>
<td>f</td>
<td>1</td>
<td>0.456</td>
<td>-0.753(*)</td>
<td>-0.410</td>
<td>-0.495(*)</td>
<td>-0.433</td>
<td>-1</td>
<td>0.648(*)</td>
<td>0.955(*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.062</td>
<td>0.272</td>
<td>0.090</td>
<td>0.027</td>
<td>0.074</td>
<td>0.049</td>
<td>0.164</td>
<td>0.111</td>
<td>0.760</td>
<td>0.56</td>
<td>0.99</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falun hitcsofásk</td>
<td>f</td>
<td>1</td>
<td>7.055(*)</td>
<td>0</td>
<td>-0.794(**)</td>
<td>-0.681(*)</td>
<td>0.99(*)</td>
<td>-0.618(*)</td>
<td>0.712(*)</td>
<td>0.949(*)</td>
<td>0.870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.001</td>
<td>0.293</td>
<td>0.009</td>
<td>0.0001</td>
<td>0.000</td>
<td>0.011</td>
<td>0.016</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falun hasznosítás (%)</td>
<td>f</td>
<td>1</td>
<td>0.294</td>
<td>-0.614(**)</td>
<td>-0.996(*)</td>
<td>0.615(*)</td>
<td>-0.999(*)</td>
<td>0.535</td>
<td>0.011</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.236</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.003</td>
<td>0.005</td>
<td>0.002</td>
<td>0.021</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Falun hasznosítás (%)</td>
<td>r</td>
<td>1</td>
<td>-0.584(**)</td>
<td>-0.535(*)</td>
<td>0.430</td>
<td>0.009</td>
<td>0.022</td>
<td>0.003</td>
<td>0.321</td>
<td>0.049</td>
<td>0.002</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.000</td>
<td>0.0003</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Vaddísző becslés</td>
<td>f</td>
<td>1</td>
<td>0.841(*)</td>
<td>-0.667(**)</td>
<td>0.457(*)</td>
<td>0.927(*)</td>
<td>-0.362(*)</td>
<td>-0.856(*)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.0000</td>
<td>0.002</td>
<td>0.049</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Vaddísző hasznosítás (%)</td>
<td>r</td>
<td>1</td>
<td>-0.517(*)</td>
<td>0</td>
<td>0.260(*)</td>
<td>-0.724(*)</td>
<td>-0.744(*)</td>
<td>0.011</td>
<td>0.204</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.025</td>
<td>0.064</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Dolmányos varjú</td>
<td>f</td>
<td>1</td>
<td>-0.708(**)</td>
<td>0</td>
<td>0.815(*)</td>
<td>0.841(*)</td>
<td>0.081(*)</td>
<td>0.000</td>
<td>0.081</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.19</td>
<td>0.204</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Róka</td>
<td>f</td>
<td>1</td>
<td>-0.698(*)</td>
<td>0</td>
<td>-0.515(*)</td>
<td>-0.558(*)</td>
<td>0.035</td>
<td>0.034</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.035</td>
<td>0.024</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Borz</td>
<td>f</td>
<td>1</td>
<td>-0.932(**)</td>
<td>0</td>
<td>-0.874(*)</td>
<td>-0.874(*)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
</tr>
</tbody>
</table>

** Segnifikancia: p < 0.01 szint (2-oldalú); * Segnifikancia: p < 0.05 szint (2-oldalú)

18. táblázat. A jelentett létszám és a befogás, a lelövés, az adott évi hasznosítás, és az előző évi hasznosítás közötti, valamint a vaddísző becslés, vaddísző teríték, dolmányos varjú (teríték), borz (teríték), róka (teríték), kóbor kutyta (teríték), kóbor macska (teríték) közötti korrelációs mátrix Hajdú-Bihar megye.
<table>
<thead>
<tr>
<th></th>
<th>Fácik becsles</th>
<th>Fácik lelkesülés</th>
<th>Fácik hasznosítás</th>
<th>Fácik hasznosítás (5-1)</th>
<th>Vaddiszó becsül</th>
<th>Vaddiszó lelkesülés</th>
<th>Vaddiszó hasznosítás</th>
<th>Vaddiszó hasznosítás (5-1)</th>
<th>Dolmányos varjú</th>
<th>Róka</th>
<th>Borz</th>
<th>Kóbor kutyá</th>
<th>Kóbor macska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fácik becsles</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.054**</td>
<td>0.070</td>
<td>-5.25%</td>
<td>-0.201</td>
<td>-0.192</td>
<td>0.047</td>
<td>-0.94%</td>
<td>0.242</td>
<td>0.222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.787</td>
<td>0.776</td>
<td>0.000</td>
<td>0.018</td>
<td>0.227</td>
<td>0.877</td>
<td>0.848</td>
<td>0.029</td>
<td>0.317</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>26</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fácik lelkesülés</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-6.41%*</td>
<td>-6.21%*</td>
<td>-6.63%*</td>
<td>-6.74%*</td>
<td>-6.26%*</td>
<td>-7.68%*</td>
<td>0.473</td>
<td>0.619</td>
<td>0.626</td>
<td>0.629%</td>
<td>0.628%</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.003</td>
<td>0.013</td>
<td>0.004</td>
<td>0.001</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fácik hasznosítás</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.434</td>
<td>-5.96%*</td>
<td>-6.64%*</td>
<td>-6.04%*</td>
<td>-6.47%*</td>
<td>-6.19%</td>
<td>0.626%</td>
<td>0.628%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.072</td>
<td>0.006</td>
<td>0.007</td>
<td>0.003</td>
<td>0.038</td>
<td>0.253</td>
<td>0.042</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fácik hasznosítás (5-1)</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-5.96%*</td>
<td>-5.84%*</td>
<td>-5.96%*</td>
<td>-7.59%*</td>
<td>-5.63%*</td>
<td>-5.67%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.008</td>
<td>0.011</td>
<td>0.009</td>
<td>0.000</td>
<td>0.015</td>
<td>0.012</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaddiszó becsül</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.943%*</td>
<td>0.943%*</td>
<td>0.943%*</td>
<td>0.943%*</td>
<td>0.943%*</td>
<td>0.943%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaddiszó hasznosítás</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-0.241</td>
<td>0.539%*</td>
<td>0.453%*</td>
<td>0.759%*</td>
<td>-0.649%*</td>
<td>-0.649%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.329</td>
<td>0.189</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolmányos varjú</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.578%*</td>
<td>0.649%*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.427</td>
<td>0.921</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Róka</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.361</td>
<td>0.459%*</td>
<td>0.361</td>
<td>0.453%*</td>
<td>0.175</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.361</td>
<td>0.453%</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borz</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-0.649%*</td>
<td>-0.639%</td>
<td></td>
<td>0.033</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td>0.033</td>
<td>0.037</td>
<td></td>
<td>0.033</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kóbor kutyá</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.55%*</td>
<td>0.55%*</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kóbor macska</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Signifikancia p < 0.01 szint (2- oldal), * Signifikancia p < 0.05 szint (2- oldal)

19. táblázat. A jelentett létszám és a befogás, a lelövés, az adott évi hasznosítás, és az előző évi hasznosítás közötti, valamint a vaddiszó becsles, vaddiszó teríték, dolmányos varjú (teríték), borz (teríték), róka (teríték), kóbor kutyá (teríték), kóbor macska (teríték) közötti korrelációs mátrix Jász-Nagykun-Szolnok megyében.
4.3.3. Következtetések

A négy legfontosabb apróvadas megye adatai alapján a következő megállapítások tehetők.

1. A négy megye fácánállomány- és hasznosítási adatai is nagyon hasonló mintázatot követnek, az alapvető, trendszintű változások viszonylag kis eltéréseket mutatnak.

2. A fácán szempontjából kedvezőtlen hatásúnak tartott vadfajok terítése és/vagy jelentett állományainak alakulása látványosan hasonló tendenciákat mutat. Ez különböző mértékben azonos vadgazdálkodási változásokra (vaddisznó terjedése, vadászható káros fajok kezelése) utal. Ezek a változások a fácán (közvetve az apróvad) visszaszorulására vagy a vele való gazdálkodás romlására utal.

3. A négy megye fácángazdálkodási adatainak összefüggés-vizsgálata szintén nagyon hasonló kapcsolatokat mutatott ki. Ezek közül ki kell emelni a jelentett létszám és az előző évi fácánhasznosítás kapcsolatát. Ez jelzi, hogy a vadgazdálkodók a következő évi nyitó létszámot az előző év eredménye alapján vélelmezik. Ezért, valamint a tervezési rendszer hibái miatt ezt a mutatót a gyakorlatban nem szabad használni.
5. Szintézis

Az alábbiakban összegezzük a tanulmány eddigi részmegállapításait.

A tanulmányunkban bemutatott következtetéseket az évente vadgazdálkodási egységek által jelentet és az Országos Vadgazdálkodási adattár által archiválott és feldolgozott adatokból szűrtük le. Bár ez az adatbázis Európában is párhuzamot országos lefedettségével, rendszerességgel és részletességgel, a tévedések elkerülésére mégis érdemes megvizsgálni menyire jól, megbízhatóak ezek az adatok, és az állomány változásán kívül még mit jelezhetnek? Már az elején világossá kívánjuk tenni, hogy az ún. „állománybecslések” nem valós becslések matematikai statisztikai értelemben, hisz nem egy közös, ellenőrzött módszer szerint történnek, sem pontosságuk, sem hibájuk, sem a torzításuk nem ismert. Valójában inkább szakemberek szubjektív vélekedéséről beszélhetünk. (Ez nem túl kirívó. A természeti értékek és erőforrások nagy részéről hasonló színvonalú adataink vannak, ha vannak egyáltalán.)

Vegyünk egy-két konkrét példát a korábban bemutatottakból. Csongrád megyében fele akkora nyúl és fácán állományból tartósan a nagyobb állományt jelentő megyéhez hasonló nagyságú hasznosítást érnek el. Lehetséges lenne, hogy ebben a megyében tartamosan többet lehet hasznosítani vagy valamilyen ok miatt következetesen alulbecslik az apróvállományt? A második magyarázat hihetőbb. Saját tucatnyi területen régóta végzett éjszakai vonaltranszekt becsléseink is rendszerint ez utóbbi eredményt hozzák. Habár az állományok abszolút nagysága nem ismert pontosan, a több évtizedes adatsorok az állományváltozás trendjeit nagy valószínűséggel jól leírják.

A két részletesen vizsgált faj a mezei nyúl és a fácán esetén is gyakran azt láttuk, hogy az állománybecslési adat erős kapcsolatban van az előző évi hasznosítás nagyságával. A fácánnál ehhez még hozzájárul a kibocsátás és a hasznosítás erős összefüggése. Kérdés hát, hogy az állománybecslés a valós állományt jelzi-e vagy egy összetettebb index, amelyet a vadászat sikere, a vadászati erőfeszítés, piaci és szabályozási környezet, gazdasági érdekek, a kibocsátás és a visszavadászás sikere úgyszintén befolyásolnak. Közrejátszhatnak a vadgazdálkodó egyéb érdekei (pl. a vadkár csökkentése) vagy olyan előre nem látható tényezők, mint pl. a szélsőséges időjárás miatti korlátozások (a vadászat letiltása nagy belvíz idején), vagy egész egyszerűen a vadászat fizikai megvalósíthatatlansága.
Az adatok szubjektivitása ellenére is el kell fogadnunk, hogy az apróvadállományok létszáma az elmúlt öt évtizedben csökken.

A korábban „duvadnak” tekintett üregi nyúl az ország nagy részéről kipusztult. Mára csak egyes kisebb foltokban található meg, ezek egy része is mesterséges telepítésből származik. Az egykori egymillió példány körüli becsült fogoly létszáma a ’90-es évek elejére a tizedére esett.

A nagy erőfeszítésekkel és jelentős támogatással folytatott ún. „fogolyprogram” is csak időlegesen, lokálisan és kis mértékben tudott állománynövekedést elérni. A támogatás megszűntével az állomány tovább fogy. Jelenleg a ’60-as évekbeli csúcs 2%-nál tart. A hazai és külföldi fogolyprogramokból néhány tanulság levonható:

1. Egyes elszigetelt akciókkal nem lehet tartós eredményt elérni.
5. Mindezek következtében a fogoly elveszítette vadgazdálkodási, ökológiai és az élőhely minőségét jelző indikátort szerepét.

A fácán állomány a ’60-as évek végén megindult mesterséges tenyésztés és kibocsátás következtében a ’70-es években élté fénykorát. Attól kezdve a becsült állomány a nagymértékű kibocsátás ellenére is csökken kötött. Mára a csúcs negyedére esett vissza. A fácán kibocsátásfüggő fajjá vált. Mind becsült állományát, mind a teritékét a kibocsátás nagysága erősen befolyásolja. A kibocsátás csökkenésével a fácánállomány is visszaesik. Mindemiat vadgazdálkodási, ökológiai és indikátort szerepe egyre kisebb.

A csökkenés a legfontosabb apróvadádfaj, a mezei nyúl esetében is jelentős. Az állományváltozás trendjét a populáció mintegy évtizedes periódusidejű ciklikus ingadozásai elfedték. A ciklikus változás oka általában a ragadozó-zsákmányállat kapcsolatokban vagy valamilyen rendszeresen változó környezeti forrásban keresendő. A mezei nyúl esetében a tényleges okra nincsenek meggyőző bizonyítékok. A rendszeres ingadozás az utóbbi két
évtizedben kevésbé kifejezett, ezért feltételezhető a korábbi populáció szabályozó tényezők mellé újabbak, esetleg nagyobb hatásúak jelentek meg.

Az állománycsökkenés okaként évtizedek óta előszeretettel említik a rossz időjárási viszonyokat. A látványos események (jelentős fagy, árvíz vagy aszály) megfigyelései esetenként valóban jól összekapcsolhatók populációs jelenségekkel. (Ld. pl. a 2003-as hosszú kemény telet követő aszályt, ami még a rókaállományt is visszavetette, vagy a 2010-es nagykiterjedésű belvízet.) De ahogy a megye szintű elemzésekből láttuk, a katasztrófális értékek nem egy folyamatos változási sorba illeszkednek, hanem kiugró értékek, amiket ennek megfelelően, és nem a szabályos kapcsolatrendszerbe illeszthető megfigyeléseként kell kezelni. A szabadban élő vadfajok evolúciójuk során ki voltak téve a kedvezőtlen időjárási körülményeknek, ez tehát nem újdonság számukra, alkalmazkodtak ezek átvészelésére és kiheverésére. Ismert tény, hogy a klimaváltozás következtében a szélsőségek felerősödnek és gyakoribbá válnak. Mégis az az igazi kérdés, hogy az egyes időjárási katasztrófák után miért nem tud regenerálódni az apróvadállomány úgy, ahogy azt pl. a gimszarvas teszi az árvizeket követően.

Az apróvad állománycsökkenésének okait vizsgálva első helyre az élőhelyvesztést és az élőhelyek romlását kell sorolni. Erre utal az is, hogy az apróvad állománya nemcsak hazánkban, de Európa számos területén is csökken. E fajok egyedi számára az ideális élőhely az erdős sziwepp lenne, ami régen is a fő előfordulási területük lehetett, ahol a gyepeket fás, cserjés foltok tarkították, búvóhelyet és további táplálékforrást is biztosítva számukra. Jelenleg is a változatos, a mozgáskörzetéhez képest kis foltokat tartalmazó élőhelyek a legjobbak számukra, ahol a szegélyekben megtalálja azt a bő táplálék kínálatot, amire szüksége van.

Ugyanakkor a jelenlegi mezőgazdasági környezetben a kulturák kis változatossága, a szegélyvegetáció csökkenése vagy akár eltűnése mellett az agrotechnikai hatások is negatívan érintik az állományt, hiszen a gyorsabb gépek, az intenzív kemikália használat is növelheti a mortalitást. A peszticidek használat elszegényíti a gyomflórát, és a fogoly- és fácáncsibék számára fontos rovarfaunát. A monokultúrás, nagy táblák sokszor nem tartalmaznak ehető táplálékot a mezői nyúl számára a vegetációs időszakban sem. Ráadásul az aratás után már egyáltalán nincs rajtuk ehető növény egy ideig, amíg az esetleges árvakelés megjelenik. Ezt bizonyítja a nyúlállomány és a napraforgó valamint a kukorica vetésterület növekedésének negatív összefüggése, az apróvadfajok táplálékvizsgálatai, valamint a nagy táblák használatára vonatkozó eredmények.
Az élőhelyi feltételek romlása mellett a ragadozók hatása is számottevő lehet. Ez valóban igaz lehet, de az élőhelyi feltételek elsődlegessége nem megkérdőjelezhető. Egy jó élőhelyen, ahol sok bűvőhely akad, valamint az állomány is sokkal nagyobb a kedvező táplálék ellátottságnak köszönhetően még jelentős mértékű predációs mortalitás mellett is nagy maradhat a populációsűrűség. Viszont kedvezőtlen élőhelyen a magas ragadozó nyomás miatt komolyan visszaeshet az állomány.

A ragadozó terítékek és az apróvad állomány változása között nehéz egyértelmű kapcsolatot kimutatni, annak a kézenfekvő feltételezésnek az ellenére, hogy ha erősebb a ragadozó gyérités ez kedvez az apróvadnak és nő az állománya. Az, hogy ez az összefüggés mégsem ilyen világos, több okra vezethető vissza. A feltételezésben a ragadozó gyérités hatékonysága és nem az állomány szerepel. Ezt fejezné ki a gyéritési ráta, amihez viszont az állomány nagyságát és a terítéket is ismerni kellene. A vadgazdálkodási jelentésekben a róka becsült állománnagysága csak az utóbbi időkben jelent meg, ezért ez a mutatót nem lehetett kiszámolni. (Az általunk idézett vizsgálatban független kérdőíves felméréssel történt az állománybecslés. Ennek megbízhatósága kisebb, mint a kötelező jelentéseké.) Lehetséges, hogy a terítéket, ahol sok tényező, pl. a védett fajok és a tiltott eszközök köre, a hivatásos vadászok hozzáértése és leterheltsége, gazdasági tényezők befolyásolják. Mindenesetre, amikor a gyéritési ráta kiszámolható volt meg kellett állapítanunk, hogy a gyérités nem hatékony, nem tudja megakadályozni a ragadozóállományok növekedését. A ragadozók létszámát is természetes ökológiai tényezők szabályozzák.

A ragadozók hatásáról kialakított képet tovább torzítja a ragadozótáplálék vizsgálati eredményeinek, néha szándékos félreértelmezése. Ahogy többször kifejtettünk a táplálékánalízis a ragadozó táplálékválasztását, a számára fontos prédát mutatja. Nem lehet belőle arra következtetni, hogy a zsákmányolás hogyan hat a prédafajok állománydinamikájára. A ragadozók beleértve a védett fajok hatását is csak szelektív ragadozómentesítési kísérletekkel lehet tisztázni. A programban is erre kell törekedni.

A helyzetet tovább bonyolítja, hogy a klasszikus modell szerint a ragadozó és a zsákmány összekapcsolt populációdinamikája miatt a prédafajok állománycsökkenését a ragadozók állománycsökkenésének kellene követni. Az idősoros elemzésekéből azt látjuk, hogy a fogoly és az üregi nyúl több ragadozó faj étrendjén szerepel, mégis állománycsökkenésük nem észlelhető a ragadozók állományainak létszámváltozásán. Ennek
oka lehet, hogy a ragadozók alternatív táplálékokra, pl. kisrágesáltora és mezei nyúlra térnek át. Az emlős ragadozók főleg a róka táplálékpreferenciájában a kisemlős, a nyúl és a fácán a sorrend. A fácán kibocsátás függő, ezért csak a kibocsátó hely könyökén és időszakosan lehet fontos táplálék. A természetes állomány általában túl kicsi ahhoz, hogy a ragadozók táplálékában jelentős legyen. Ezért találják a legtöbb vizsgálatban a kisemlősök és a mezei nyulat a legfontosabb prédafajoknak. Ebből viszont az következik, hogy a legtöbb ragadozó a többi apróvadafaj állományának drasztikus megfogyatkozása miatt, e két préda közt kell, hogy válasszon. Ez és a kisemlősök esetleges megfogyatkozása tovább növelheti a ragadozónyomást a mezei nyúlon.

Megjegyezzük, hogy a védett ragadozók védett zsákmányállat fajok állományában okozott kártétele a legtöbb esetben előhely-kezelési problémákra vezethető vissza, amint azt a vidra mocsári teknősre, illetve récefélékre irányuló predációja esetében tapasztaltuk (Lanszki és mtsai. 2006, Lanszki és Széles 2006), ezért itt nem is a gyérítés a megoldás.

Túlhasznosítást okozhat, hogy ahogy láttuk a becsles függ az előző évi hasznosítástól, ugyanakkor a hasznosítás kevésbé függ az adott évi becslesétől. Ráadásul a hasznosítást is tél végén 9-10 hónappal a vadászidény előtt kell megtervezni. A tervezésénél nem sok haszna van a tél végi becsléseknek, ezek jelenthetik az állomány öszi-téli állapotát, de nem mutatják az adott évi szaporulatot és elhullást. A hasznosítható mennyiség pedig ezektől függ.

Végül meg kell jegyeznünk, hogy rendkívül káros a fajvédelem előtérbe helyezése a rendszerszintű konzervációhoz képest. Az apróvadafajok nem védettek, ezért sokkal kisebb gondoskodásra tarthatnak számot. Ugyanakkor a táplálékhalózatok elmaradhatatlan része. Egyrészt az ökoszisztémában a növények elterjedését és populációagyságát szabadlózzák, másrészt pedig fontos zsákmányfajai a nagyobb testű ragadozóknak, mint pl. a parlagi sasnak. Véleményünk szerint, ami egybevág az EU 2014-2020 közötti biodiverzitás stratégiájában megfogalmazzottakkal, a védett fajokon és a védett területeken túllépve az ökoszisztémák működésének fenntartására kellene összpontosítani.

A fent jelzett problémák megoldására az alábbiakat javasoljuk.

2. Ahol az élőhelyfejlesztés nem megoldható a nyári táplálékhiányos időszakban (pl. aratás után) lédús takarmány (pl. cukorrépa, szilázsok, káposztafélék, lucerna stb) területre való kijuttatásával (takarmányozás) kell segíteni elsősorban a fiatal nyulak túlélését. A takarmányt a szegélyek mellett kis adagokban, de sűrűn (200 méterenként) kell kihelyezni.

3. Mindenéven akadályozni kell az erdőterület növekedését és vele párhuzamosan a vaddisznó térnyerését.

5. A táplálkozási vizsgálatok legfontosabb tanulsága, hogy hazánk emlős ragadozóinak elsődleges táplálékát a kisemlősök adják. Ez egyben azt is jelenti, hogy a bőséges kisrácsaló állomány komoly elterelő hatású lehet, más értékesebb, például vadászható, vagy védett zsákmányfajokról. Ezért, hatásaik csökkentésében komoly szerepe lehet az alternatív vagy extensív mezőgazdálkodási technológiáknak, melyek mellett e kisrácsaló fajok jelenléte lényegesen gyakoribb.

6. A ragadozó fajok közül a róka és a borz rendelkezik olyan változatos táplálékleízéval, amely magában hordozza a veszély lehetőségét a zsákmányállományokra nézve. Ezek ellen mindenéven védekezni és ennek keretében állományaikkal tudatosan gazdálkodni kell. Az előbbi két vadfajon kívül a kóbor háziállatok – a macska és a kutya egyaránt – komoly veszélyt jelentenek, esetükben, a szabad területen való előfordulásukat kell megszüntetni vagy kizárni. Csak megjegyezzük, hogy a kóbor háziállatok kérdése leginkább a kritikán aluli színvonalú hazai társállattartási szokásokra vezethető vissza, a bajok gyökerét is itt kell(ene) keresni és megoldást találni. A többi emlős ragadozó esetében az adott helyen és időben egyedi vizsgálatokkal lehet eldönteni, hogy szükség van-e beavatkozásokra.
7. Új, hatékony módszereket kell bevezetni a ragadozógazdálkodásba. Elsősorban a kotorékok felszámolása javasolt. Emellett különböző élvefogó és ölő csapdák kiterjedt és rendszeres használata szükséges részben a kotorékozással lecsökkentett rókaállomány visszatelepülésének lassítására, részben más vadászható ragadozófajok (dolmányos varjú, szarka, közönséges görény, nyest, kóbor kutya ill. macska) állományainak csökktentésére. Meg kell teremteni a ragadozógyérítés személyi feltételeit.
6. Irodalomjegyzék

